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Abstract

Self-Organized Maps (SOMs) are a popular approach for clustering data. However, most SOM
based approaches ignore prior knowledge about potential categories. Also, Self Organized Map (SOM)
based approaches usually develop topographic maps with disjoint and uniform activation regions that
correspond to a hard clustering of the patterns at their nodes. We present a novel Self-Organizing
map, the Kernel Supervised Dynamic Grid Self-Organized Map (KSDG-SOM). This model adapts its
parameters in a kernel space. Gaussian kernels are used and their mean and variance components are
adapted in order to optimize the fitness to the input density. The KSDG-SOM also grows dynamically
up to a size defined with statistical criteria. It is capable of incorporating a priori information for the
known categories. This information forms a supervised bias at the cluster formation and the model
owns the potentiality of revising incorrect functional labels. The new method overcomes the main
drawbacks of most of the existing clustering methods that lack a mechanism for dynamical extension
on the basis of a balance between unsupervised and supervised drives.
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1 Introduction
The paper introduces the Kernel based Supervised Dynamic Grid
Self-Organized Map model (KSDG-SOM) model. Clustering is one
of the most widely used data analysis technique for many data
analysis applications [2, 5, 6]. It aims to provide insight into the
structure of the data and aids at the discovery of functional classes.

Bayesian clustering [7, 8], and the Self-Organizing Map (SOM)
[6] usually ignore any existing class information. In addition many
kernel-based developments of the SOM approach, do not have an
explicit provision for incorporating supervised labeling [9, 10].

The standard SOM algorithm has a number of properties,
which render it to a candidate of particular interest as a basis
framework for building more flexible and advanced algorithms for
analysis. SOMs can be implemented easily, are fast, robust and
scale well to large data sets. They allow one to impose partial
structure on the clusters and facilitate visualization and interpre-
tation. In the case hierarchical information is required, it can be
implemented on top of SOM, as in [11].

Recently, several dynamically extended schemes have been pro-
posed that overcome the limitation of the fixed non-adaptable ar-
chitecture of the SOM. Some examples are the Dynamic Topology
Representing structures [12], the Growing Cell Structures [8, 13],
Self-Organized Tree Algorithms [14, 5], the joint entropy maximiza-
tion approach [15] and the Adaptive Resonance Theory [16].

The presented approach has some similarities to these dynam-
ically extended schemes, from the point of view of its unsupervised
component. However, one essential difference exists: all the fore-
mentioned schemes are purely unsupervised, lacking a design for
the incorporation of problem domain knowledge. Instead, we focus
on the design of such types of algorithms that aim to explore effec-
tively existing a priori supervised class labeling, for multi-class and
multi-labeled data. The multiple labeling, i.e. the possible assign-
ment of more than one class label at each data record, perplexes
the clustering and classification tasks. Also, in contrast to the com-
plexity of some of these schemes, we design simple algorithms that
through the restriction of growing on a rectangular grid, can be
implemented easily and the training of the models is very efficient.
In addition, most of the benefits of the more complex alternatives
of dynamical extension are still retained.

We call the proposed model KSDG-SOM from Kernel Super-
vised Dynamic Grid SOM, since it is a model trained in kernel space
and although it is SOM based it tightly integrates unsupervised and
supervised learning components.

As a kernel the Gaussian one is used. The Gaussian kernel
mapping implements more elaborate soft class separation bound-
aries than the hard separation onto Voronoi regions obtained by
evaluating directly at the input space the inner products of the
patterns and the prototype vectors. As with other kernel meth-
ods [17, 18], we aim to exploit a nonlinear transformation of the
input space onto a high-dimensional feature space. Intuitively,
the SOM based learning constructs Voronoi regions over this high-
dimensional space in which the extra dimensions enhance the pos-
sibilities of defining more elaborately the cluster boundaries.

The KSDG-SOM has been designed in order to automatically
detect the appropriate level of expansion, so that the number of
clusters is controlled by a properly defined measure of the algorithm
itself, with no need for any a priori specification. This is quite
important for analysis tasks where very little (or nothing) can be
claimed about an a priori estimate of the number of clusters.

Unfortunately, the functions of most data (e.g. gene expression
recordings) are either unknown or partially and unreliably known.
Motivated by this we have designed the KSDG-SOM in order to be
simply another one clustering and classification device but instead
and more important to be a reclassification device. It takes both

input data and existing classification labels into account in order
to evaluate a new set of classes. The cost function (minimized
during learning) implements a trade-off between the unsupervised
quantization error (arising from the input variance) and the super-
vised mislabeling error (quantified by an entropy-like term). The
unsupervised error in traditional supervised approaches (e.g. Ra-
dial Basis Function, Support Vector Machines) is hidden behind
the supervised error, i.e. the unsupervised techniques are used as
hidden steps, not directly connected to the ouput labels. Hence,
these approaches cannot penalize explicitly the dispersion in the
input space. The presented approach accomplishes such a compro-
mise between unsupervised and supervised drives that guides to a
reclassification of the training set, that can expose new insights at
the problem structure.

Comparing with other related approaches in the literature,
that attempt to integrate both unsupervised and supervised learn-
ing, the approach of [19] preserves the topology of the space defined
by the patterns themselves (”primary space” e.g. unsupervised
part) and uses the class labelings (”auxiliary” data) to measure
distances by similarity in the auxiliary space. The locality crite-
rion in terms of the primary space implements the unsupervised
contribution, while the computation of similarities in terms of the
labeled ”auxiliary” space constitutes the supervised part. How-
ever, such an approach is aimed for the cases where sufficient and
reliable class information exist. To the contrary, we aim to exploit
supervised information only when it exists and thus we confront
the problems with both incomplete and unreliable class labelings
of data.

Another related work, is the approach to reclassification with
supervised clustering presented in [20]. The main differences and
improvements of our approach compared with the former are:

1. We perform the determination of the proper number of clus-
ters for each unsupervised/supervised relative strength via
the dynamical extension process of the KSDG-SOM that is
controlled with rigid statistical criteria.

2. We exploit the advantages of the kernel mapping. We pre-
fer the use of Gaussian kernels due to their mathematical
tractability.

3. We quantify the inconsensus in supervised labelings of the
patterns represented by a node with an entropy-like term
that is descriptive even for the symbolic unordered class
labelings of the data.

4. We confront the case of multiple functional class labelings
of the data.

The paper is outlined as follows: Section 2 deals with the definition
of error measure minimization in kernel space. Section 3 deals
with the learning algorithms that adapt both the structure and the
parameters of the KSDG-SOM. The expansion phase of the KSDG-
SOM learning is described in Section 4 separately since it is rather
lengthy. Section Finally, Section 5 presents the conclusions along
with some directions onto which further research can proceed for
improvements.

2 Kernel Space Adaptation of Gaus-

sian Means/Variances
This section derives learning rules for the adaptation of the Gaus-
sian kernels of the KSDG-SOM. These rules are in turn used in

2

Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul, Turkey, May 27-29, 2006 (pp127-134)



Section 3.4.1 that defines the update of weights and variances dur-
ing the learning process in terms of them. Clearly, formulas for the
adaptation of both the Gaussian means and of variances should
be derived. The accommodated Gaussian nodes with overlapping
activation regions, instead of the usual SOM nodes with disjoint
and uniform activation regions (Voronoi tesselation), increase sig-
nificantly the potentiality of the model for effective learning of the
input density [21]. Furthermore, a proper higher-dimensional fea-
ture space (e.g. the product space) can reveal interesting structure
of the data (e.g. higher order statistics) which may go unnoticed
in the standard Euclidean space [22].

Denote by L a lattice of N nodes and by I ⊂ <d the input
space. Each node i ∈ L is characterized by its weight vector wi =
[wi1 . . .wid] ∈ I and by a lattice coordinate ri ∈ LA, where LA is
the lattice space.

Instead of directly computing the activation of a node with
weight vector wi from the input vector x by the inner product
〈x,wi〉, we utilize a kernel function K(x,wi) = 〈Φ(x),Φ(wi)〉.
The selected kernel is the Gaussian one:

K(x,wi, σi) = exp(−
‖x − wi‖

2

2σ2

i

)

Following the common practice of SOM-like algorithms, we
want to minimize the distortion between the mapping of the input
Φ(x), assigned to node i, and the mapping of the node Φ(wi),
i.e. the prototype of node i in kernel space. Therefore we perform
gradient descent with respect to wi in order to adapt it properly:

∂

∂wi

‖Φ(x) −Φ(wi)‖
2 =

∂

∂wi

K(wi,wi, σi) +
∂

∂wi

K(x,x, σi)

− 2
∂

∂wi

K(x,wi, σi)

= −2
∂

∂wi

exp

(

−
‖x − wi‖

2

2σ2
i

)

(1)

Thus the update rule for the kernel centers wi should be of
the following form:

∆wi = µw

(x − wi)

σ2

i

K(x,wi, σi) (2)

with µw the learning rate for the kernel centers, referred as kernel
centers learning rate parameter µw .

The next step is to derive the learning rule for the kernel
radii σi, ∀i ∈ L. The parameters σi correspond to the vari-
ance with a Gaussian mixture model interpretation. An effective
policy for their initialization is to set them equal to the median
of the Euclidean distances from each positive training set mem-
ber to the nearest negative. By performing gradient descent on
‖Φ(x) −Φ(wi)‖

2, with respect to σi, we obtain:

∆σi ∝
‖x − wi‖

2

σ3
i

K(x,wi, σi)

Therefore the update rule for the Gaussian centers will be of the
form:

∆σi = µσ
‖x − wi‖

2

σ3
i

K(x,wi, σi) (3)

with µσ the learning rate for the kernel variances (i.e. radii), re-
ferred as kernel variance learning rate parameter µσ .

Typical values that we have used for the kernel centers learning
rate parameter µw and the kernel variance learning rate parameters
µσ , are µw = 0.1 and µσ = 0.1. However, the convergence of the
algorithm is not sensitive to the exact values of these parameters.
We obtained convergence even for large values of µw , µσ , i.e. µw =
0.5, µσ = 0.7. Clearly, for small values (e.g. µw = 0.01, µσ = 0.01)
convergence is obtained, as it was expected.

3 The KSDG-SOM algorithm
This section is organized in two parts: The first subsection elabo-
rates further the general error criterion for optimization. The next
subsection details on the algorithms for the minimization of this
error.

3.1 Elaboration of the error criterion for
optimization

The KSDG-SOM learning process should aim to minimize a hetero-
geneous 1 performance measure (i.e. error function). Denoting by
Kn the number of KSDG-SOM nodes, which correspond (as noted
previously) to clusters of patterns, clearly K > Kn since each su-
percluster is composed of one or more clusters. We can reformulate
the general form of the error function in terms of SDG-SOM nodes
and with distinct unsupervised and supervised parts as:

E =

Kn
∑

k=1

UnsupervisedComponentk+rsu·

Kn
∑

k=1

SupervisedComponentk+ModelOrderPenalty

(4)
The UnsupervisedComponent will be measured in terms of the
AverageLocalError(abbreviatedALE) and the SupervisedComponent
by means of an entropy-like quantity (abbreviated EntropyLike)
that generally is not an entropy with the strict definition. Also,
rsu is a parameter that controls the relative significance of the su-
pervised part. Restating of these quantities we obtain a measure
ΘE to minimize:

ΘE = min

(

Kn
∑

k=1

ALEk + rsu · EntropyLikek + MOP

)

(5)

where ALE denotes the Average Local Error, EntropyLike is the
forementioned entropy-like parameter, MOP abbreviates the Model
Order Penalty and Kn is the number of nodes. This minimization
is achieved with the formulation of SOM-like learning rules and
with a dynamic expansion process.

The parameter ALE of Equation 5 accounts for the unsuper-
vised (quantization) error corresponding to the representation of
each pattern i by the codebook of node k and can deal with the
lack of class information. This measure tries to disperse patterns
that are different according to some similarity metric, to different
clusters, even if they are labeled with the same functional class
label.

A commonly used measure for the Local Error (LE), and the
one that we minimize with the formulation of equation 1, is the Eu-
clidean distance between the kernel mapping Φ(xi) of input vector

1Heterogeneous in the sense that integrates supervised, un-

supervised and model complexity terms
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xi and the kernel mapping Φ(wk) of the representative prototype
wk of its best matching node k, i.e.

LEi = ‖Φ(xi) −Φ(wk)‖2 (6)

Then the Average Local Error (ALE) is obtained by averaging
the Local Error (LE) over all the patterns mapped to the same
node. The justification for this averaging is explained in Section 4.

The available a priori information for the functional class of
the patterns is considered by the entropy like measure. This mea-
sure corresponds to an entropy like quantity that characterizes the
uniformity of functional labeling of the node where the pattern is
mapped. It is formally defined in Section 4. The entropy measure
is effective for evaluating category discordances over the discrete
nominal category space of functional labelings. Minimization of
this measure is performed by gathering patterns with the same (or
at least similar) labels onto the same clusters.

The MOP (ModelOrderPenalty) term punishes any increase
in the model complexity. In this framework, the model complexity
relates to the number Ks of superclusters of KSDG-SOM nodes.

The superclusters on the KSDG-SOM lattice (viewed as undi-
rected graph) are defined as the connected components of the graph
that represent the same class labels. It is clear that the superclus-
ters can partition the state space in regions of arbitrary shape (i.e.
not necessarily spherical as the case of the clusters corresponding
to KSDG-SOM nodes).

Since superclusters define relatively homogenous regions of the
state space, we found more appropriate to define the model com-
plexity in terms of these. We define the model order penalty in
terms of the squared difference between the number of the original
classes and the number of developed superclusters that represent
the newly formed (i.e. discovered) classes. We should note that
very simple models consisted of less superclasses than the original
classes are also punished.

Specifically, denoting (as usually) by K0 the number of orig-
inal classes and by Ks the number of superclusters, a term of the
following form is exploited:

MOP = γ · (K0 − Ks)
2 (7)

In order to set properly the parameter γ we use a well working
heuristic: we require that by doubling the number of original classes
K0 (i.e. Ks = 2 ·K0) we get a penalty equal to the unsupervised +
supervised part of the error. This criterion was found appropriate
to automatically set a value for the γ parameter at the KSDG-SOM
implementation.

With rsu = 0 we have pure unsupervised learning with model
complexity penalization. As rsu increases, the cost ΘE is mini-
mized for configurations that fit better to the a priori classification.
Finally, for sufficiently large values of rsu, the a priori component
dominates completely. Clearly, since in this case the information
provided by the data is demolished, care should be taken to avoid
such rsu values.

After the former discussion on the error components that the
KSDG-SOM aims to jointly minimize, we can now proceed to de-
scribe the corresponding learning algorithms.

3.2 The KSDG-SOM dynamic growing and
adaptation

The KSDG-SOM is initialized with four nodes arranged in a 2X2
rectangular grid and grows nodes to represent the input data. This
type of initialization is somehow arbitrary and different starting
configurations can be used, e.g. 9 nodes arranged as a 3X3 grid.

Weight values of the nodes are self-organized according to a new
method inspired by the SOM algorithm. The self-organization pro-
cess maps properties of the original high-dimensional data space
onto the lattice consisted of KSDG-SOM nodes. The map is ex-
panded to represent the input space by creating new nodes, either
from the boundary nodes performing boundary extension, or by
inserting whole columns (or rows) of new units with a column ex-
tension (or row extension).

A training epoch consists of the presentation of all the training
patterns to the KSDG-SOM. A training run is defined as the train-
ing of the KSDG-SOM with a fixed number of neurons at its lattice
i.e. the training between successive node insertions/deletions.

The top-level KSDG-SOM learning in algorithmic notation can
be described as:

<Top-level KSDG-SOM learning algorithm>

1. Initialization (sets rsu = 0, i.e. pure unsupervised learning). (Subsection 3.3)
Repeat // develop a series of models corresponding to increasing

// consideration of the supervised parameter, rsu

Repeat

2. Training Run Adaptation phase. (Subsection 3.4)
3. Expansion phase (Section 4)

until criteria for stopping map expansion are satisfied
4. Fine Tuning Adaptation phase (Subsection 3.6)
5. Save configuration of the map for the current supervised/unsupervised ratio, rsu.
6. Compute classification performance for the current rsu

7. Increment the significance of the supervised part, i.e. increase ratio rsu

until Classification Performance ≈ 1
8. Model Selection Step (Subsection 3.8)

The details of the algorithm, i.e. the initialization, adaptation,
fine tuning phases and the corresponding convergence criteria are
described in detail below. The technical subleties involved in the
expansion process are scrutinized detail in section 4.

3.3 Initialization phase.
The weight vectors of the four starting nodes that are arranged in
a 2X2 grid are initialized with random numbers within the domain
of feature values. Other initialization schemes are possible i.e. as
it has been noted we can initialize to a 3X3 grid. The supervi-
sion parameter rsu controls the tradeof between unsupervised and
supervised training and is discussed in detail in Section 4. It is
initialized to 0, i.e. pure unsupervised learning is performed for
the first KSDG-SOM model being generated.

3.4 Training Run Adaptation phase.
The purpose of this phase is to stabilize the current map configura-
tion in order to be able to evaluate its effectiveness and the require-
ments for further expansion. During this phase, the input patterns
are repeatedly presented and the corresponding self-organization
actions are performed until the map converges sufficiently. The
training run adaptation phase takes the following algorithmic form.

<Training Run Adaptation Phase>:

MapConverged := false;
while MapConverged = false do

for all input patterns do

present and adapt the map by applying the map adaptation rules (Subsection 3.4.1)
endfor
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Evaluate map training run convergence condition (Subsection 4.1)
and set MapConverged accordingly

endwhile

The map adaptation rules are described below while the train-
ing run convergence condition is described in Section 4.1, after the
appropriate terms have been defined.

3.4.1 Map adaptation rules

The map adaptation rules that govern the processing of each input
pattern xk are as follows:

1. Determination of the weight vector wi for which its ker-
nel mapping Φ(wi) is closest to the kernel mapping Φ(xk),
of the input vector xk, according to the utilized distance
measure (i.e. determination of the winner node).

2. Adaptation of the weight vectors (i.e. Gaussian centers)
only for the four nodes in the direct neighborhood of the
winner and for the winner itself according to the following
formula:

wj(k+1) =

{

wj(k), j /∈ Nk

wj(k) + µw · Λk(d(i, j)) · ∆wj(k), j ∈ Nk

(8)

3. Adaptation of the Gaussian spreads also only for the four
nodes in the direct neighborhood of the winner and for the
winner itself according to the following formula:

σj(k+1) =

{

σj(k), j /∈ Nk

σj(k) + µσ · Λk(d(i, j)) · ∆σj(k), j ∈ Nk

(9)

where the learning rates µw(k), µσ(k), k ∈ N , are monotoni-
cally decreasing sequence of positive parameters, Nk is the neigh-
borhood of the winner node at the kth learning step and Λk(d(j, i))
is the neighborhood function implementing different adaptation
rates even within the same neighborhood. Also, the gradient infor-
mation ∆wj(k), ∆σj(k) for the weight and variance adaptation,
was derived in Section 2 (i.e. equations 2, 3). Clearly, both param-
eters are defined in terms of the kernel distance metric.

The learning rates µw(k), µσ(k), k ∈ N typically start from a
value of 0.1 and decrease down to 0.02. These values are specified
with the empirical criterion of having relatively fast convergence,
without however sacrificing the stability of the map.

The KSDG-SOM starts with a much smaller size than a usual
SOM. Therefore a large neighborhood is not required to train the
whole map at the first learning steps (e.g. with 4 nodes initially
at the map, a neighborhood of 1 only is required). As training
proceeds, during subsequent training epochs, the area defined by
the neighborhood becomes localized near the winning neuron, not
by shrinking the vicinity radius (as in the standard SOM) but by
enlarging the SOM with the dynamic growing.

The neighborhood function Λk(d(j, i)), can thus be defined
with the following simple formula (the row and column of a node i
are denoted by ir , ic respectively):

Λk(d(j, i)) =

{

1 if j = i
α, 0 < α < 1, if |ir − jr| + |ic − jc| = 1
0, otherwise

3.5 Expansion Phase
This phase constitutes the main core of the learning algorithms. It
is described in detail in section 4.

3.6 Fine Tuning Adaptation Phase
The fine tuning phase aims to optimize the final KSDG-SOM con-
figuration. This phase is similar to the training run adaptation
phase described previously (subsection 3.4) with two differences:

1. The final criterion for map convergence is more elaborated.
We require much smaller change of the Total Growth Pa-
rameter for accepting the condition for map convergence.

2. The learning rate decreases to a smaller value in order to
allow fine adjustments to the final structure of the map.

Typically, the ConvergenceErrorThreshold for the fine tuning
phase is about 0.00001 and the learning rate is set to 0.01 (or to
an even smaller value).

3.7 Evaluation of classification performances

To each KSDG-SOM node is assigned a classification vector CL

with elements CLl = prl, where prl is the ratio of the patterns with
functional label l, among all the patterns mapped to the node. This
vector is considered as the predicted classification of new patterns
that are evaluated on a trained KSDG-SOM device.

This classification is a soft one: each CLl expresses the prob-
ability that to a node (and consequently the mapped patterns) is
assigned a label l. We therefore compute the performance based on
a metric that we describe below. Specifically, for each class label l
of each pattern i, a score scl,i is assigned. This score equals to the
classification vector element for class label l, CLl, formely defined
as CLl = prl, if the corresponding label is included in the original
class assignment (i.e. cl,i = 1) and equals qrl = 1 − CLl in the
other case (i.e. cl,i = 0). In essence the score scl,i measures the
consensus of the functional labeling for class l between the pattern
i and the node. Clearly, by summing over all labels we characterize
with the TotalScorei parameter, the consensus of the functional la-
beling between the pattern i and the node it is mapped onto. This
parameter is calculated as:

TotalScorei =

Nc
∑

l=1

scl,i, where scl,i =

{

CLl if cl,i = 1
1 − CLl if cl,i = 0

Intuitively, a small CLl ≈ 0 for a class that does not appear
as a functional label (i.e. cl,i = 0) for an input pattern is much
more a success than a failure, therefore being considered by a score
1 − CLi ≈ 1.

The performance for each pattern i, perf i is then obtained
by dividing this score with the total number of functional class
labelings, Nc, i.e.

Perfi =
TotalScorei

Nc

The global measure of the performance ClassificationPerformance(rsu)
for a given ratio rsu (i.e. the supervision weighting parameter of
equation 5), is obtained by averaging the Perf i values for all the
patterns of the testing set, TS i.e.

ClassificationPerformance(rsu) =

∑

i∈TS
Perfi

|TS|

5
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where the notation |TS| denotes the number of elements of the
testing set. The testing set was obtained by splitting the original
data sets into ten approximately equal parts and using the tenfold

cross validation methodology to evaluate the performance [23].

3.8 Model Selection Step
During this step a well performing ratio rsu is selected by using
the following criteria:

• The classification performance has obtained significant in-
crease for the selected rsu parameter value at the corre-
sponding classification performance curve and this increase
is followed by a plateau. The increase at the classification
performance with increasing rsu, means that a priori infor-
mation for the application was taken into account by the
second term of Equation 5 that enforces class labeling uni-
formity at the formation of the cluster boundaries. The
plateau that we require to follow the steep increase implies
that increasing further the strength of the a priori infor-
mation, although it can bias the model heavily towards an
imperfect domain theory, does not offer significant improve-
ments to its generalization potential.

• The number of the KSDG-SOM nodes that grow for the
”optimal” rsu value should be relatively small (small model
complexity). This criterion prefers the models with the
smallest complexity that offer adequate generalization per-
formance.

We should note that these selection criteria are somewhat
heuristic. However, there seem to perform an adequate model se-
lection.

3.9 Node Deletion
Nodes that are selected as winners for very few (usually one or
two) training patterns, termed uncolonized nodes, are not deleted
by our scheme although they probably correspond to noisy outliers.
The patterns that consistently (three times or more) are mapped
to uncolonized nodes are very unique and can either be artifacts or
if not they have the potential to provide knowledge. Therefore they
are amenable to further consideration. These patterns therefore are
marked and isolated for further study. Nodes that are not selected
as winners for any pattern are removed from the map in order to
keep it compact.

4 The Expansion Process
The expansion is based on the detection of the neurons with large
Growth Parameter (GP), referred to as the unresolved neurons.
The node with the largest GP becomes the current focus of map
expansion.

The Growth Parameter for node i, denoted GPi, is based on
an heterogeneous type of error, computed as:

GPi = ALEi + rsu · EntropyLikei (10)

where we recall that the ALE denotes the Average Local Error.
We describe in turn the two components of 10, i.e. the average

local error and the entropy.

A local error term is commonly used for implementing dynam-
ically growing schemes [5]. A general assessment of the local error,
lei, is given by

lei =
∑

x∈Si

Dist(Φ(x), Φ(wi)) (11)

where we denote by Si the set of patterns x mapped to node
i, wi the weight vector of node i that corresponds to the average
expression profile of Si and the Dist operator denotes the corre-
sponding distance metric.

However, the peculiarities of the data analysis application do-
main motivated two significant modifications to the classic local
error measure. Specifically:

1. Instead of the simple local error measure of Equation 11 we
use the average local error ALEi per pattern, defined as:

ALEi =
lei

|Si|
(12)

where |Si| denotes the number of elements of the set |Si|.

This measure does not increase when many similar patterns
are mapped to the same node.

2. The second provision applies when we have class informa-
tion available (either complete or partial) and we want to
exploit it in order to improve the expansion. The local error
that accumulates to a winner node is amplified by a factor
that is inversely proportional to the square root of the fre-
quency ratio rc of its corresponding class c. Specifically, let
rc = #patterns of class c

#total patterns
be the frequency ratio of class c.

Then the amplification factor is r
−

1

2
c .

The supervised contribution to the heterogeneous error of Equa-
tion 5 is based on the computation of a parameter HNi character-
izing the entropy of the class assignment content of each node i.
An advantage of the entropy is that it is relatively insensitive to
the over-representation of classes. This means that independently
of how many patterns of a class are mapped to the same node, if
the node does not represent significantly other classes, its entropy
is very small.

We first consider the simple case of each pattern belonging
only to one functional class. The assignment of a class label to
each neuron of the KSDG-SOM is in this case performed according
to a majority-voting scheme [24]. The entropy parameter, that
quantifies the uncertainty of the class label of neuron m, can be
directly evaluated by counting the votes at each SOM neuron for
every class as [25]:

HN(m) = −

Nc
∑

k=1

pk · log pk (13)

where Nc denotes the number of classes and pk =
Vk

Vpattern
,

is the ratio of votes Vk for class k to the total number of patterns
Vpattern that vote to neuron m. The parameter pk has a probability
interpretation, i.e. it is computed as the relative frequency of votes
for each class k. For the single label case, the number of labeled
patterns Vpattern is also equal to the number of votes.

Clearly, the entropy HN(m) is zero for unambiguous neurons
and increases as the uncertainty about the class label of the neuron
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m increases. The upper bound of HN(m) is log(Nc), and corre-
sponds to the situation where all the classes are equiprobable (i.e.
the voting mechanism does not favor a particular class).

For the multi-label case, the voting scheme remains the same,
but each pattern in this case can vote for more than one class. The
frequent case of having patterns not assigned to any functional class
is handled as a vote to the Unassigned class.

A quantity HR(m) is defined similarly:

HR(m) = −

Nc
∑

k=1

rk · log rk (14)

The rk do not correspond to probabilities but they are class

voting ratios defined as the pk (i.e. rk = Vk

Vpattern
). However, in

this case
∑

k
Vk > Vpattern and therefore

∑Nc

k=1
rk > 1. Thus,

HR(m) is not mathematically an entropy of a probability distri-
bution. However, this quantity retains properties similar to the
entropy.

We consider an example in order to explain the handling of
multiple labeling by equation 14. Let Nc = 3 and suppose that
30 patterns are assigned to node m1, all of them having as a label
all the three classes and that 90 patterns are assigned to neuron
m2 one third of them having as a label class 1, another third class
2 and the last third class 3. Although in each case there are 30
patterns voting for each class, the quantity HR will be high in the
case of the 90 patterns (i.e. log(3)) and zero at the other case.
Thus, the HR measure has quantified effectively the similarity of
multiple class labeling between patterns of some cluster.

4.1 Evaluation of the map training run
convergence condition

The Total Growth Parameter ”(TGP) is defined by summing the
Growth Parameter (defined with equation 10) of all nodes, i.e.

TGP =
∑

i ∈ KSDGSOMnodes

GPi

.
The reduction of the Total Growth Parameter (TGP , defined

in section 4) controls the training run convergence condition. The
corresponding convergence test is:

MapConverged :=

(

|TGPb − TGPa|

TGPa

< ConvergenceErrorThreshold

)

where TGPb =
∑

i
(GPi)b and TGPa =

∑

i
(GPi)a denote

respectively the sum of the Growth Parameters for all nodes before
and after the presentation of patterns (i.e. one training epoch) and
the ConvergenceErrorThreshold is a given value.

The above formula states that the map converges when the
relative change of the TGP parameter between successive epochs
drops below the threshold value. The setting of the ConvergenceEr-
rorThreshold is somewhat empirical but a value in the range 0.01
- 0.02 performs well in assuming sufficient convergence without ex-
cessive computation.

5 Conclusions
This work has presented a new self-growing adaptive neural net-
work model fitted to the requirements for clustering and classifica-
tion of multi-labeled data. This model, called KSDG-SOM over-
comes elegantly the main drawbacks of most of the existing clus-
tering methods that impose an a priori specification at the number
of clusters. The KSDG-SOM determines adaptively the number of
clusters with a dynamic extension process which is able to exploit
class information whenever available. It grows within a rectan-
gular grid that provides the potential for the implementation of
efficient training algorithms. The expansion of the KSDG-SOM is
based on an adaptive process. This process grows nodes at the
boundary nodes, ripples weights from the internal nodes towards
the outer nodes of the grid, and inserts whole columns within the
map. The growing algorithm is simple and computationally ef-
fective. It prefers to grow from the boundary nodes in order to
minimize the map readjustment operations. However, a mecha-
nism for whole column (row) insertion is implemented in order to
deal with the case that a large map should be expanded around
a point that is deep within its interior. The growing process de-
termines automatically the appropriate level of expansion in order
the similarity between the potential patterns of the same cluster to
fulfill a designer definable statistical confidence level of not being a
random event.

Multiple KSDG-SOM models are constructed dynamically each
for a different unsupervised / supervised balance. Model selection
criteria are used to select an KSDG-SOM model that optimizes
the contribution of the unsupervised part of the patterns with the
a priori knowledge (supervised part). The model selected on the
basis of these criteria can revise better unreliable and incomplete
functional labeling on the basis of unsupervised drives.
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