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Abstract-- Speech process has benefited a great deal from the wavelet transforms. Wavelet packets decompose 
signals in to broader components using linear spectral bisecting. In this paper, mixtures of speech signals are 
decomposed using wavelet packets, the phase difference between the two mixtures are investigated in wavelet 
domain. In our method Laplacian Mixture Model (LMM) is defined. An Expectation Maximization (EM) 
algorithm is used for training of the model and calculation of model parameters which is the mixture matrix. And 
then we compare estimation of mixing matrix by LMM-EM with different wavelet. Therefore individual speech 
components of speech mixtures are separated. 
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1. Introduction 
 

Blind source separation techniques using 
independent component analysis (ICA) have many 
potential applications including speech recognition 
systems, telecommunications, and biomedical signal 
processing. The goal of ICA is to recover 
independent sources given only sensor observation 
datum that are unknown linear mixtures of the 
unobserved independent source signals [1]–[6]. The 
standard formulation of ICA requires at least as many 
sensors as sources.  

Lewicki and Sejnowski [7], [8] have proposed a 
generalized ICA method for learning overcomplete 
representations of data that allows more basis vectors 
than dimensions in the input. Several approaches 
have been investigated to address the overcomplete 
source separation problems in the past. Lewicki [9] 
provided a complete Baysian approach assuming 
Laplacian source prior to estimating both the mixing 
matrix and the source in the time domain. Clustering 
solutions were introduced by Hyvarinen [10] and 
Bofill-Zibulesky [11]. Davies and Miltianoudis [12] 
employed modified discrete cosine transform 
(MDCT) to obtain a sparse representation. They 
proposed a two-state Gassian mixture model (GMM) 
to represent the source densities and the possible 

additive noise and used an expectation-maximization, 
(EM)-type algorithm, to perform separation with 
reasonable performance.  

In this paper, we explore the case of two-sensor 
setup with no additive noise, where the source 
separation problem becomes a one-dimensional 
optimal detection problem. The phase difference 
between the two-sensor data is employed. A 
Laplacian mixture model (LMM) is fitted to the 
phase difference between the two sensors, using an 
EM-type algorithm in each wavelet packet. The 
LMM model can be used for source separation and 
source localization. Since in the overcomplete model 
of source separation estimation of mixture matrix is 
very important in this paper, therefore we use LMM 
model for each wavelet packet with phase 
differences. Note that wavelet packets are obtained 
from decomposition of two mixtures. 

                                         
2. Background Material 

 
Wavelets are transform methods that has received 

great deal of attention over the past several years. 
The wavelet transform is a time-scale representation 
method that decomposes signals into basis functions 
of time and scale, which makes it useful in 

Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul, Turkey, May 27-29, 2006 (pp145-150)



 2

applications such as signal denoising, wave detection, 
data compression, feature extraction, etc.  

There are many techniques based on wavelet 
theory, such as wavelet packets, wavelet 
approximation and decomposition, discrete and 
continuous wavelet transform, etc. 

Backbone of the wavelets theory is the following 
two equations: 
 

)2(2)( 2/
, ktt jj
kj −= φφ                       (1) 

)2(2)( 2/
, ktt jj
kj −= ψψ                      (2) 

 
Where )(tφ  and )(tψ are basic scaling function and 
mother wavelet function respectively. 

The wavelet system is a set of building blocks to 
construct or represent a signal or function. It is a two 
dimensional expansion set. A linear expansion would 
be: 

,
0
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Most of the results of wavelet theory are developed 

using filter banks. In applications one never has to 
deal directly with the scaling functions or wavelets, 
only the coefficients of the filters in the filter banks 
are needed 0. A full wavelet packet decomposition 
binary tree for tree scale wavelet packet transform is 
shown in figure (1). 

 

 
 

Figure (1) 
 

3. Mathematical Model 
 

Assume a set of M sensors expressed as a vector: 
T

M txtxtxtxtX )](...,)(,)(,)([)( 321= where xi(t) is 
the output of the ith sensor and also assume that there 
are N source signals as in vector:  

T
N tststststS )](...,)(,)(,)([)( 321=   

where again si(t) is the ith source. In this paper we 
will assume noise-less instantaneous mixing model 
i.e.  )(.)( tSAtX =  Where A denotes the mixing 
matrix. The source separation problems consist of 
estimating the original sources )(tS , given the 
observed signals )(tX . In the case of an equal 
number of sources and sensors (N=M), a number of 
robust approaches using independent component 
analysis (ICA) have been proposed by Mitianoudis 
[14]. In the overcomplete source separation case 
(M<N), the source separation problem consists of 
two sub problems i) estimating the mixing matrix A 
and ii) estimating the source signals )(tS . 

In figure (2) we have shown the scatter plot of the 
two sensor signals, that is, two mixtures of three 
speech signals. To get a sparser representation of 
data, we use the wavelet packet decomposition 
(WPD) on the observed signals [15]-[17]. By 
examining of the scatter plot, we can see that two 
dimensional problem is mapped into a one 
dimensional problem. The most important parameter 
to us is the angle θ  (phase difference of two 
observed signal) of each point in the plot. 
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Figure (2) scatter plot of x2(t) respect to x1(t) in 

wavelet Domain 
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Figure (3) histogram of  phase difference between 

wavelet packets of x2(t) , x1(t)  
 
If we have two sensors and three sources then we can 
express the mixing model as: 
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ASX =                                                   (5) 
For simplicity we assume 1 1ja =  for all j=1 ,2 ,3 and 
then we can write : 
 

332211)( sbsbsbtX ++=                            (6) 
 
Equation (6) indicates that each source signal in the 
scatter plots will be in the jb direction.  

We define phase difference of observed data 
measured by sensors as follows: 
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Where Pi(xj) is the ith packet wavelet of jth 
observation signal. In figure (3) we have plotted the 
histogram of the phase difference of observed signals 
in wavelet packet domain. 
 
 

4.Laplacian Mixture Modeling 
 

The laplacian density is usually expressed as:  
0),,( 0

θθθθ −−= ccecL                  (8) 
Where 0θ represent the center of density function and 
c>0 controls the width or variance of the density. An 
LMM is defined as: 
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Where kkk c,,θα are the weights, centers, and widths 
of each Laplacian respectively. In the next section we 
will show how the EM algorithm is used to train the 
model to get the optimum values of the model 
parameters. 
  
 

5. Training Process Using the EM 
Algorithm 

 
In [18] Bilmes proposed a procedure to find 

maximum likelihood mixture (MLM) density 
parameters using EM. In this section, we use the EM 
algorithm to train a LMM, based on [18]. Assuming 
T samples for kθ and Laplacian mixture densities as 
in equation (8), the log likelihood takes the following 
form: 
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Where )( tkf θ represents the probability of tθ  
belonging to kth Laplacian distribution. The iteration 
rules update )( tkf θ and kα .  

 To obtain the update values for kt c,θ we solved 
derivatives of ),,( kkk cJ θα  with respect to kt c,θ , that 
is:  
 

0       ,0 =
∂
∂

=
∂
∂

kk c
JJ

θ
                               (11) 

 
Using these iteration formulas we are able to train 

the LMM and estimate the center and other 
parameters of each Laplacian distribution. The block 
diagram of the proposed algrith is shown in figure 
(4). 
 

 
Figure (4) 

 
As the figure (4) shows, the wavelet packets of the 

two mixtures of speech signal, x1(t) and x2(t), is 
obtained. Then in every filter bank, the phase 
differences of the packets of x1(t) and x2(t) is 
calculated. The next step is to manipulate the 
histograms of the phase angle differences. The center 

Obtaining Mixtures of X2(t) , X1(t) 

Wavelet Packet Decomposition for 
each mixtures

Obtaining Phase differences between packets 

Calculation of Pahse differences Histogram 

LMM-EM 

Calculation of mixiture 
matrix 
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of each Laplacian density is estimated using the 
Laplacian mixture model. The training algorithm 
used in this process is an EM type. Therefore, after 
the convergence of the EM, the estimation of the 
mixture matrix is obtained. 
 
 

6. Experiment and simulation 
 

We have tested our proposed scheme by choosing 
matrix A, as presented in the following three 
examples. Example 1: Mixing matrix for two 
sources: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
5.15.1

11
1A  

 
Figure (5) shows scatter of two mixing data in 

wavelet packet domain for all packets and also 
histograms of phase difference these packets in 
mixtures. Figure (6-a) and (6-b) show convergence of 
estimated parameters for Laplacian model. 
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Figure (5) a) histogram for phase differences, b) 

scatter plot of packets of mixtures 
 

We can see from figure (5) that after 30 -40 
iterations the LMM_EM converges, and the center of 
each Laplacian density is estimated where they are 
used to estimate the entry of mixing matrix. The 
numerical value for our example is as: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
5018.14906.1
11

1A  

 
 
 
 
 

Example 2: Mixing matrix for three sources: 
  

2

1 1 1
1.6 0.3 1.6

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

 
Figure (7) shows scatter of two mixing data in 
wavelet packet domain for all packets and also 
histograms of phase difference these packets in 
mixtures. Figures (8-a) and (8-b) show convergence 
of estimated parameters for Laplacian model. 
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Figure (6) a) Learning curves for convergence of 

LMM-EM algorithm, b) estimated LMM of sources  
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Figure (7) a) histogram for phase differences, b) 

scatter plot of packets of mixtures 
 

We can see from figure (8-a) that after 20 -30 
iterations the LMM_EM converges, and the center of 
each Laplacian density is estimated where they are 
used to estimate the entry of mixing matrix. The 
numerical value for our example is as: 
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Figure (8) a) Learning curves for convergence of 

LMM-EM algorithm, b) Estimated LMM of sources  
 
In the next section we will inspect parameter 
estimation of mixing matrix by different wavelet and 
comparison between them will be done. 
 

 
7. Comparison  

 
First we decompose phase difference of mixture 

signals by wavelet packet in 7 levels (complete tree 
format), and in each level we apply LMM-EM 
algorithm for any packet. Then we estimate mixing 
matrix parameters for each packet and then we 
compute average of these matrixes.  

We used mixing matrix for this investigation as: 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
7.12.07.1

111
A  

Tables (1), (2), (3) show result of estimation in 
each level of wavelet decomposition. We see in these 
tables, by increasing of level decomposition, we have 
good estimation. And by comparing of these tables 
with each other we see that good estimation is 
obtained when discrete Meyer (dmey) wavelet is 
used. 

 
Table (1) estimation of mixing matrix by 'db4' 

 
Lev1 1.7941 0.18308 -1.6985 
Lev2 1.7615 0.18676 -1.7013 
Lev3 1.7372 0.21012 -1.7006 
Lev4 1.7399 0.22100 -1.6912 
Lev5 1.7150 0.19844 -1.7073 

Lev6 1.6902 0.19341 -1.7027 
Lev7 1.6938 0.19423 -1.6987 

 
Table (2) estimation of mixing matrix by 'dmey' 

 
Lev1 1.7617 0.21785 1.6897 
Lev2 1.7384 0.18093 1.6952 
Lev3 1.6965 0.20184 1.7017 
Lev4 1.7198 0.21439 1.7052 
Lev5 1.7075 0.20037 1.7034 
Lev6 1.6978 0.20021 1.7014 
Lev7 1.6989 0.20819 1.7036 

 
Table (3) estimation of mixing matrix by 'bior1.3' 

 
Lev1 1.7550 0.23043  1.6966 
Lev2 1.7532 0.20451  1.6969 
Lev3 1.7159 0.21558  1.7088 
Lev4 1.6910 0.21377  1.7021 
Lev5 1.7151 0.21244  1.7042 
Lev6 1.6824 0.20737  1.6958 
Lev7 1.7124 0.20565  1.6984 

 
 

8. Conclusion 
 

In this investigation we have shown that one can 
use the coherent phase information between wavelet 
packets to estimate mixing matrix in a speech 
mixture. We have highlighted that the EM algorithm 
can be used in a LMM in order to estimate the 
mixture parameters.  

When we have more sources than sensors, 
overcomplete case, we have shown that the number 
of iteration is about 20-30 iterations, which is much 
less than other reported cases. We map two 
dimensional problem to one dimensional (phase 
differences between two packets in wavelet domain.) 
and then we get more accurate estimation of mixture 
matrix. Two examples with two and three source 
components in the mixture were undertaken for 
simulations. Results indicate that we have enabled to 
estimate the mixing matrix with a high degree of 
accuracy. Finally we show that when we use high 
resolution in packet domain we obtain good 
estimation of mixing matrix and when we use 
discrete Meyer wavelet, we obtain better results than 
other wavelets.  
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