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Abstract: This paper contains the factorization of the polyphase matrix of finite impulse 
response perfect reconstruction filter banks into unimodular factors containing finite Jordan 
nilpotent structures and the associated transform matrices. An important contribution of the 
paper is the proposal of a systematic procedure for the construction of the transform matrices. 
The factorization is based on the M-channel lifting scheme which is essentially a prime 
factorization. It leads to simple implementation structures maintaining the computational 
complexity unchanged.    
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1. Introduction 
The complete and minimal factorization of 
biorthogonal polyphase matrices is 
important in designing filter banks and 
wavelets. This has been studied extensively 
in the literature [1, 2, 3]. In [4] Schuller and 
Swelden proposed a new design method for 
biorthogonal filter banks based on the 
factorization of the polyphase matrix of a 
perfect reconstruction  filter bank (PRFB) 
into unimodular factors containing Jordan 
nilpotent forms with invertible transform 
matrices in between. This design is 
complete, meaning that, any perfect 
reconstruction filter bank can be 
represented in the nilpotent matrix 
formalism. Such a design leads to an all-
FIR filter bank with unequal lengths for 
analysis and synthesis filters to adapt to 
perceptual limits; that is, long analysis 
filters for good frequency selectivity and 
short synthesis filters for noise reduction. A 
systematic procedure for the generation of 
the transform matrices along with the finite 
unimodular Jordan matrices has not been 
proposed so far. In this paper we present a 
scheme that makes use of the lifting 

factorization technique [5, 6] to arrive at the 
finite unimodular Jordan structure and the 
associated transform matrices. This is 
essentially a prime factorization.  

The paper is organized as follows. 
Section 2 gives the polyphase representa-
tion of the M-channel filter bank and 
Section 3 carries a brief description of the 
basic theory involved. In Section 4, 
factorization is presented along with a brief 
review of the M-channel lifting 
factorization. The factorization is illustrated 
with an example in Section 5. 

 
 

2. Polyphase Representation 
Consider an M-band analysis/synthesis 
filter bank depicted in Fig.1. The input is an 
M- dimensional block vector given by, 
 
       x(m) =  [x(mM+M-1),K ,x(mM)]T        (1)   
   
where ‘m’ is the block index. If X(z), Y(z) 
and are the  Z-transforms of the input 
vector, subband signal vector and the 
reconstructed signal vector respectively, 

)(zX̂
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and  E(z) and R(z)  are the analysis and 
synthesis polyphase matrices respectively, 
then  

Y (z) = E(z) X (z)                (2) 
for the analyzer and,  

             (z) = R (z) Y(z)                          (3) X̂
for the synthesizer. The filter bank has the 
PR property if,   
                       (4) (z)(z)z(z) 1and −−= ESR
where  is the shift matrix which 
circularly shifts the elements of a vector or 
matrix by one sample and d is the amount 
by which the output is delayed to allow for 
causal filters , 
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na denotes the amount of shift. The range of 
na is limited to 0 ≤ na ≤ M, for a M-band 
filter bank.  
 

 
 
3. Basic Theory  
The basic building block for the design of 
the filter bank in the nilpotent matrix 
formalism is a unimodular matrix 
polynomial [I + A(z)] with A(z) a nilpotent  
matrix polynomial [7] with order of 
nilpotency l. The synthesis polyphase 
matrix is [I + A(z)]-1 which is also a 
unimodular polynomial matrix expressed 
using the Taylor series expansion as 

        [I+A(z)]-1 = I + ∑
−

=
−

1

1
(z))(

l

i
iA      (6) 

Since A(z) is a nilpotent matrix polynomial 
with order of nilpotency l the expansion in 
equation (6) will contain  l-1 terms only. 
Thus, if the analysis filters are causal FIR, 
then the synthesis filters are also causal 
FIR. The analysis and synthesis filters 
result with unequal lengths, for l > 2. 
 
4. Factorization  
In this section we develop a factorization of 
the polyphase matrix of a PR filter bank 
into Jordan factors of the form [I + z p J],  
p ε {1,-1} and J the Jordan nilpotent 
matrix. 

The factorization is based on the 
lifting scheme [5, 6]. In Section 4.1 we give 
a brief review of the lifting factorization 
along with an illustration of the method for 
generating the transform matrices based on 
this factorization. 

 
 

4.1. Lifting Scheme 
Daubechies and Swelden [5] proved that 
the polyphase matrix of a PR filter bank can 
be factored into a unit upper and lower 
triangular 2 x 2 matrices and a diagonal 
matrix. These triangular matrices are the 
lifting steps. Since the lifting factorization 
has unit diagonal scaling it is easy to invert 
the matrix. The 2-band lifting scheme has 
been extended to the M-channel case by 
Chen and Kevin [6]. As in the 2-band case 
Euclidean Algorithm is the basis for the M-
channel lifting factorization. Repeated size 
reduction using the Monic Euclidean 
Algorithm and Gaussian elimination results 
in the M-channel lifting steps. 
 
4.1.1. M-channel lifting Factorization 
An M-channel lifting step from channel  
to channel i (j,i =  1,K ,M) with multipliers 

, is defined as [6], 

j

α(z)
        Γi,j [α(z)] = I + α(z) eiej

T     (7) 
where I is an M x M identity matrix and 

 is a Mx1 vector with 1 at the iie th 
position. Since E(z) is the polyphase 
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matrix of a FIR filter bank, α(z) is FIR. 
(Γi,j[α(z)]) is a unimodular  triangular 
matrix. Its inverse is also a simple lifting 
step 

Let E(z) be the polyphase matrix of a PRFB 
with . Then there 
exist two sets of FIR M-channel simple 
lifting steps, B(z) and F(z), and a diagonal 
matrix, where    

with k

(8) α(z)][

]α(z)[(z)])[ T1-

−=

=

ji,

jiji,

Γ

ee-I(Γ α

Zk;z(z)][ k ∈= −Edet

(z),λ
a).(9)z,(1,1,diag(z) k−= Kλ
b).(9)z,,z,(zdiag(z) M21 kkkor −−−= Kλ

1+k2+...kM = k, 
               

This is a variant of the Smith Normal form 
[7]. In equation (9.c),                 

          

.c) (9(z)(z)(z)(z)  FλBE =

(10)(z)i(z)
1-M

1i
∏
=

= BB

where Bi(z) corresponds to the Gaussian el-
imination   

 (11)(z)(z)
1

1-Mk
k

∏
=

= FF

where Fk(z) corresponds to the application 
of the Monic Euclidean Algorithm.  

The matrices B(z) and F(z) are the 
cascades of  [I + α(z) eiej

T ].  The matrix 
eiej

T is nilpotent with order of nilpotency 2. 
The Jordan form of eiej

T is given by . 
That is, 

φJ

                    (12. a) 1
iφi

T −= WJWee ji

and the cascade is, 
[I + α(z) eiej

T ] =  Wi [I + α(z) ] WφJ i
-1 (12. b) 

The Jordan form of the matrix is,   

and W
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i and Wi
-1 are the transform matrices.  

The detailed steps for the reduction of the 

cascades of [I + α(z) ei ej
T ] into the  finite 

Jordan nilpotent form along with  the 
associated transform matrices are given  in 
Appendix A. We express B(z) and F(z) as 
cascades of the basic building blocks 
containing the least order nilpotent matrices 
along with the transform matrices 
associated with the finite Jordan structure.  
The Jordan nilpotent form leads to a simple 
implementation structure. Even though this 
factorization is not of minimal delay it is a 
low delay one. This procedure is not based 
on degree reduction, but on size reduction. 
Since this factorization is based on lifting, 
any higher order matrix can also be 
decomposed into lower order ones. The 
transform matrices are essentially non- 
singular and can be expressed as in (14) [8], 
where µ ≠ 0, A' is a non singular matrix, 
and the permutation matrix P swaps row 1 
and row i. The structure has the minimum 
number of parameters. A lifting factorizat-
ion for A can be obtained by recursively 
applying this structure on A'. 
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Since the factors have unit diagonal scaling 
the polyphase matrix corresponding to the 
FIR synthesizer is obtained by directly 
inverting each of the building blocks and 
the associated transform matrices. The 
proposed factorization is illustrated for an 
order one matrix in the next section. The 
same procedure can be extended to higher 
order polyphase matrices as well. 
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5. Example 
 Consider an order-one analysis polyphase 
matrix [9], 
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 of a 3-channel FIR PR filter bank with  

1z81(z)][ −−=Edet . 
(z)E can be  factorized by applying the 

proposed procedure as,    
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Figures (2) and (3) show the implementati-
on structure of the polyphase matrix of the 
3-channel filter bank given in the example.  
 

 

The constant lifting matrices and the 
matrices associated with the Jordan forms 
are cascaded to form the transform 
matrices, Ti (for i = 0,K ,3). These transf-
orm matrices are sparse invertible matrices. 
 
Remark: In this example, the transform 
matrices T0 and T1 correspond to B(z) 
whereas T2 and T3 correspond to F(z). 
 
 
6. Conclusion 
We have shown that the polyphase matrices 
of perfect reconstruction filter banks can be 
represented using unimodular matrices as 
the basic building blocks. These 
unimodular matrices contain Jordan 
nilpotent factors. This factorization of the 
polyphase matrix yields simple structures 
for the implementation of the perfect 
reconstruction filter banks and retains the 
computational complexity unchanged. 
 
 

Appendix A 
 

(a) Representation of B(z) in the finite 
Jordan form 
 
The thr cascade of B(z) is given by,     

where,                                       

 are all FIR. Thus,      

Expanding equation (17), 
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Now replacing  in (18) by its Jordan 
form, 

T
ji ee
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[ ] [ ]

[ ] 19)((z)α
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Setting , ,
or  in  general,  in equation 
(19), 

Thus we obtain   as the basic 
building block along with the associated tr-
ansform matrices -1. 
Expressing each of the blocks in equation 
(18) as obtained in equation (20), 
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with transform matrices in between the 
basic building blocks, at the beginning and 
at the end. 
 
(b) Representation of F(z) in the fixed 
Jordan form  
The rthcascade of  is,    (z)F
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1
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where   is the number of lifting steps.  
The matrix is,                                              
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umn of the matrix [6].Thus F(z) can 
be written as                                               

where,         

Substituting (25) in equation (24) and redu- 
cing the matrix  into the fixed Jordan 
form as,                        
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Thus there are N x (M-1) numbers of 
cascades repeated 
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Equations (21) and (28) express the 

polyphase matrix in terms of factors 
containing a fixed Jordan matrix and the 
associated transform matrices. 
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