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Abstract: - In this paper we present several methods for change detection in a pair of multi-look synthetic aperture 
radar (SAR) images of the same scene.  We implement and compare several techniques which vary in complexity. 
Among the simple methods that are implemented are differencing, Euclidean distance, and image ratioing.  These 
methods require minimal processing time, with little computational complexity, and incorporate no statistical 
information.  We also implemented methods which incorporate second order statistic calculations in making a 
change decision in efforts to mitigate false alarms arising from the speckle noise, misregistration errors, and 
nonlinear variations in SAR images. These methods include a Wiener prediction-based method, Mahalanobis 
distance measure and subspace projection method.  We compare the performance of these methods using multi-
look SAR images containing several targets (mines). We present results in the form of receiver operating 
characteristics (ROC) curves.   
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1 Introduction 
Using multitemporal SAR images of the same scene, 
analysts employ several methods to determine 
changes among the set [1].  Change may be abrupt in 
which case only two images are required or it may 
be gradual in which case several images of a given 
scene are compared in order to identify change.  The 
former case is considered here, where SAR images 
are analyzed to detect land mines.  Much of the 
change detection activity has been focused on 
optical data for specific applications, e.g., several 
change detection methods are implemented and 
compared to detect land cover changes in 
multispectral imagery [2]. However, due to the 
natural limitations of optical sensors, e.g., sensitivity 
to weather and illumination conditions, SAR sensors 
may constitute a superior sensor for change 
detection as images for this purpose are obtained at 
various times of day under varying conditions.  

In this chapter, we have implemented image 
differencing, ratio, Euclidean distance, Mahalanobis 
distance, subspace projection-based [3-4], Wiener 
filter-based change detection [5] and compared their 
performance to one another.  We demonstrate all 
algorithms on co-registered SAR images obtained 
from a high resolution, VV-polarized SAR system.  
In Section 2, we discuss difference-based change 
detection, Euclidean distance, and ratio change 
detection methods which comprise the simpler 

change detection methods implemented in this 
paper.  In Sections 3-5 we discuss more complex 
methods such as Mahalanobis distance, subspace 
projection-based change detection, and Wiener 
filter-based change detection, respectively.  We 
consider specific implementation issues in Section 6 
and present results in Section 7.  Finally, a 
conclusion is provided in Section 8. 

 
2 Difference, Euclidean distance, and 
image ratioing change detection 
methods 
In simple difference-based change detection a pixel 
from one image (the reference image) is subtracted 
from the pixel in the corresponding location of 
another image (the test image) which has changed 
with respect to the reference image.  If the difference 
is greater than a threshold, then a change is said to 
have occurred.  One can also subtract a block of 
pixels from one image from the corresponding block 
from a test image. This is referred to as Euclidean 
difference if the blocks of pixels are arranged into 
vectors and the L-2 norm of the difference of these 
vectors is computed. We implemented the Euclidean 
distance as in (1) where we computed the L-2 norm 
of the difference between a block of pixels (arranged 
into a 1 dimensional vector) from reference 
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image, , and the corresponding block in the test 
image, , to obtain an error,   

Xf

Yf ),( jieE

ijijE jie xy −=),(                      (1) 
where x and y are vectors of pixels taken from 

and , respectively at location (i,j). We display 
this error, , as an image.  When no change has 
occurred this error is expected to be low and the 
error will be high when a change has occurred.  
While simple differencing considers only two pixels 
in making a change decision, the Euclidean distance 
takes into account pixels within the neighborhood of 
the pixel in question.  This regional decision may 
have a smoothing effect on the change image at the 
expense of additional computational complexity.   

Xf Yf
),( jieE

      Closely related to the Euclidean distance metric 
for change detection is image ratioing.  In many 
change detection applications ratioing proved more 
robust to illumination effects than simple 
differencing.  It is implemented as follows: 

 
ij

ij
R x

y
jie =),(                                  (2) 

where  and are pixels from the same locations 
in the test and reference images, respectively. 

ijy ijx

 
3 Mahalanobis distance-based change 
detection 

Simple techniques like differencing and image 
ratioing suffer from sensitivity to noise and 
illumination intensity variations in the images.  
Therefore, the Mahalanobis distance measure is used  
to detect changes in SAR imagery.  In this change 
detection application, we obtain an error (change) 
image by computing the Mahalanobis distance 
between x and y to obtain  as follows.   ),( jieMD

          )()(),( 1
ijijX

T
ijijMD jie yxCyx −−= −         (3) 

The  term in the Mahalanobis distance is the 
inverse covariance matrix computed from vectors of 
pixels in .  By considering the effects of other 
pixels in making a change decision with the 
inclusion of second order statistics, the Mahalanobis 
distance method is expected to reduce false alarms.  
The  term should improve the estimate by 
reducing the effects of background clutter variance 
which, for the purpose of detecting mines in SAR 
imagery, does not constitute a significant change.   

1−
XC
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4  Subspace projection-based change 
detection 
In order to apply subspace projection to change 
detection a subspace must be defined for either the 
reference or test image. We computed the covariance 
of a sample from  and its eigenvectors and 
eigenvalues as follows:  

Xf

T
XXX ))(( μXμXC −−=                      (4) 

where X is a matrix of pixels whose columns 
represent a block of pixels from , arranged as 
described in Section 6, having mean 

Xf

NxNX X1μ = .  
is a square matrix of size NxN whose elements 

are 1/N, where N is the number of columns of X.   
We define the subspace of the reference data, which 
we can express using eigen-decomposition in terms 
of its eigenvectors, V, and eigenvalues,  

NxN1

Λ
T

X ΛVVC = .                              (5) 
We truncate the number of eigenvectors in V, 
denoted by , to develop a subspace projection 
operator, : 

V~

XP
T

X VVP ~~
= .                                 (6) 

The projection of the test image onto the subspace of 
the reference image will provide a measure of how 
much of the test sample is represented by the 
reference image.  Therefore, by computing the 
squared difference between the test image and its 
projection onto the subspace of the reference image 
we obtain an estimate of the difference between the 
two images, 

            ])([),( ijX
T
ijSP jie yPIy −= .                      (7) 

We evaluated the effects of various levels of 
truncation and display the best results achieved.  In 
our implementations we include the term in the 
subspace projection error term as follows: 

1−
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ijXX
T

X
T
ijSP jie yPICPIy )()(),(' 1 −−= − .      (8) 

We expect it will play a similar role as it does in the 
Mahalanobis prediction and further diminish false 
alarms by suppressing the background clutter. 
 
5 Wiener prediction-based change 
detection 

We propose a Wiener prediction-based change 
detection algorithm to overcome some of the 
limitations of simple differencing, namely to exploit 
the highly correlated nature of speckle noise, thereby 
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reducing false alarms. close to the actual data.  The 
Wiener filter [5] is the linear minimum mean-
squared error estimator for second-order stationary 
data.    Consider the signal . The goal of 
Wiener filtering is to find W which minimizes the 
error, 

ijij Wxy =ˆ

ijijW jie yy ˆ),( −= , where y represents a desired 
signal.  In the case of change detection y is taken 
from the test image, , which contains changes as 
compared to the reference image, .  The Wiener 
filter seeks the value of W which minimizes the 
mean squared error, . If the linear minimum 
mean-squared error estimator of Y satisfies the 
orthogonality condition, the following expressions 
hold: 
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where represents the expectation operator, X is a 
matrix of pixels whose columns represent a block of 
pixels from , Y is a matrix of pixels from 

whose columns represent a block of pixels at the 
same locations as those in X, is the cross 
correlation matrix of X and Y, and is the auto 
correlation matrix of X.  For a complete description 
of the construction of X and Y see Section 6.  The 
equations in (11) imply that W satisfies the Wiener-
Hopf equation, which has the following solution: 
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Therefore, we have: 
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error can be computed as follows 
ijijW jie yy ˆ),( −= .                      (12) 

In a modified implementation of the Wiener 
prediction-based change detection method, we insert 
a normalization (or whitening) term, , into the 
error equation as follows: 

1−
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We expect it will play a similar role as it does in the 
Mahalanobis prediction and further diminish false 
alarms by suppressing the background clutter.  In 
our work we implemented (13) to detect changes in 
pixels occurring from one image to another.  (i,j)  We'

is the error at each pixel, which we display as an 
image.   
 
6  Implementation considerations 
In implementing the Mahalanobis distance, subspace 
projection based-, and the Wiener filter-based 
change detection methods, we constructed our data 
matrices and vectors locally in order to compute the 
local statistics and generate a change image.  We 
generate X, Y, x, and y using dual concentric sliding 
windows.  X and Y are matrices of pixels contained 
within an outer moving window (size mxm), whose 
columns are obtained from overlapping smaller 
blocks (x1, x2, …,xM each of size nxn) within the 
outer windows of the reference image and test 
image, respectively, as demonstrated in Fig. 1 and 
Fig. 2 for X  where  .  
Accordingly, the dimensions of X and Y will be 
NxM,

] ...  21 Mxx[xX =

 where N=n2 and M=m2.   Note, for clarity the 
windows that generate the columns of X and Y are 
not shown as overlapping in Fig. 2. However, in 
actual implementation the X and Y matrices are 
constructed from overlapping windows within X and  
Y.  x and y, as shown in Fig. 1, are Nx1 vectors 
composed of pixels within the inner window (size n 
x n) of the reference image, , and test image, , 
respectively.  In this local implementation we must 
compute the necessary statistics at each iteration as 
we move pixel by pixel through the image, thereby 
generating new X and Y matrices and x and y 
vectors.    

Xf Yf

 
 

   
Fig.1 Dual Concentric sliding windows of the 
reference and test images, respectively. 
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Fig.2 Construction of X matrix. 

 
7  Experimental Results 
Results from all methods implemented were 
normalized between zero and one before producing 
ROC curves.  The threshold to generate the ROC 
curves also ranged from zero to one in increments of 
10-3.  We used multi-look data collected at X band 
from a high resolution, VV-polarized SAR system 
(Fig. 3a and 3b).  Small mines, comprising about a 
5x5 pixel area, appear in the test image (Fig. 3b).  
The size of both the reference and test image is 
950x950 pixels.  Ground truth was provided which 
indicates the approximate center location of the 
known mines; we defined the mine area as an area 
slightly bigger than the average mine, centered at the 
locations indicated by ground truth information.  To 
determine the performance, a hit was tabulated if at 
least a single pixel within the mine area surpassed 
the threshold.  Any pixel outside of a mine area 
which surpassed the threshold was counted as a false 
alarm.    

Fig. 4a shows the pixel differencing and Fig. 4b 
shows the Euclidean distance change images.  The 
ratio change image obtained from (2) is represented 
in Fig. 5b.  The local implementation results shown 
in Fig. 5b, 6a, and 6b are from implementations 
where the inner window was of size 3x3; the outer 

window, from which we constructed X and Y 
matrices to compute the second order statistics, was 
of size13x13.  We gathered one hundred and sixty-
nine overlapping 3x3 blocks from the 13x13 area, 
arranged each into a 9x1 vector, and placed them as 
columns in a matrix of size 9x169.  We re-computed 
X and Y at each iteration to determine change at 
each pixel.   
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m 

m

n n

n

n

The three very bright spots in the original images, 
Fig. 3, are used to register the images and were 
identified as changes in the simple change detection 
methods.  The local methods which incorporated 
image statistics were able to eliminate these bright 
areas from the change image (Figs. 5b, 6a, and 6b), 
as they are present in both the reference and test 
images at different intensities.  Another area of the 
image which results in many false alarms after 
processing by the simpler methods, (results shown in 
Fig. 4a, 4b, and 5a), is the area in the upper right 
quadrant of the image.  In the test image, Fig. 3b, 
this area is comprised of several slanted lines, while 
in the reference image, Fig. 3a, there is a more 
random, grainy pattern.  The Wiener filter-based 
method with , Mahalanobis distance, and 
subspace projection method with  methods all 
show far fewer false alarms in this area than is 
shown in the results from the simpler change 
detection methods.  ROC curves for the simple 
change detection methods can be seen in Fig. 7a and 
ROC curves for the more complicated methods 
which have the  term are shown in Fig. 7b.  A 
plot of the ROC curves for all the methods 
implemented is displayed in Fig. 8 for comparison. 
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      Local Wiener with , local Mahalanobis, local 
subspace projection with , and ratio methods all 
show similar performance.  However, the local 
Mahalanobis distance method begins to perform 
worst than the others from about .4 to .65 probability 
of detection (Pd) rate, then surpasses all the other 
methods above Pd = .65.  The simple difference 
method has the worst performance over all Pd rates. 
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(a)                                   (b) 

 Fig.3  Original SAR Images: (a) Reference image, 
(b) Test image with mines contained in elliptical 
area. 

       
                       (a)             (b) 
Fig.4 (a) Simple difference change image, (b) 
Euclidean distance change image. 

 

                     
                   (a)                                      (b)   
Fig.5  (a) Ratio change image, (b) Local Mahalanobis 
distance change image.  
 
 
 
 
 

 

        
                      (a)              (b) 
Fig.6 (a) Local Subspace Projection (with term) 
change image, (b) Local Wiener predicted (with 

term) change image. 
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                 (a)                   (b) 
Fig.7  ROC curves displaying performance of (a) simple change detection methods and (b) methods incorporating term.1−

XC
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Fig.8  ROC curves displaying performance of the various change detection methods implemented in this paper. 
 
8  Conclusion   
As we have only demonstrated the algorithms on a 
limited data set of one scene, it is not prudent to 
make broad conclusions.  However there are some 
trends indicated by the results above.  Results above 
indicate that in general the more complex algorithms 
exhibited superior performance as compared to the 
simple methods; the exception seems to be the ratio 
method.  The ratio method, although a simple 
implementation, has performance which is 
competitive with the more complex change detection 
methods implemented up to a Pd rate approximately 
equal to 0.65.  Its performance degrades at higher 
detection rates, where it suffers from more false 
alarms than the methods which have the .   1−

XC
     Results indicate that taking into account the local 
spatial and statistical properties of the image 
improves the change detection performance.  Local 
characteristics are used in computing the inverse 
covariance matrix, resulting in fewer false alarms as 
compared to the simple change detection methods.  
The ROC curves in Figs. 7 and 8 also show that 
addition of the  term may serve to mitigate false 
alarms that arise from speckle which is a hindrance 
to achieving low false alarm rates with the Euclidean  

1−
XC

 
 
distance and simple difference methods.  As 
expected the simple difference method exhibits the 
worst performance, having a high occurrence of 
false alarms.   
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