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1 Introduction

In the signal-processing literature, x(α) typically de-
notes a function. In the following we distinguish between
a function x and x(α), the latter meaning the value of x at
the point (or time) α. Sometimes a function x is denoted
by x(·), and also we useHx to meanH(x). This notation
is often useful in studies of systems in which signals are
transformed into other signals.
A recent paper [1] considers continuous-time linear

time-invariant systems governed by a relation y = Hx
in which x is an input, y is the corresponding output, and
H is the system map that takes inputs into outputs. It was
assumed that inputs and outputs are complex-valued func-
tions defined on the set IR of real numbers. As is well
known, it is a widely-held belief of long standing that the
input-output properties of H are completely described by
its impulse response. Using a standard interpretation of
what is meant by a system’s impulse response, it is shown
in [1] that this belief is incorrect in a simple setting inwhich
x is drawn from the linear space of bounded uniformly-
continuous complex-valued functions defined on IR. More
specifically, it was shown that there is anH of the kind de-
scribed above, even a causal H , whose impulse response
is the zero function, but which takes certain inputs into
nonzero outputs.1 It is clear that such H’s do not possess
convolution representations.
Here, in Section 2, we consider the most general fam-

ily of linear shift-invariant maps that take (measurable)
bounded inputs defined on IRd into bounded outputs de-
fined on IRd, where d is an arbitrary positive integer. We
give, in Theorem 1 of Section 2, necessary and sufficient
conditions for the existence of convolution representations
with integrable impulse responses. In the Appendix a re-

1Another result along these lines is described in Section 2
(see Theorem 2). See also [2] for a different approach. For
related results, concerning discrete-time systems, including a
representation theorem for input-output maps, see [3] and the
references cited there.

lated result is described concerning cases in which inputs
and outputs are defined on the half-line [0,∞).

2 The Representation Theorem

2.1 Preliminaries
Throughout this section, d is an arbitrary positive integer

andL∞(IRd) denotes the normed linear space of complex-
valued bounded Lebesgue-measurable functions x defined
on IRd, with the norm given by

‖x‖ = sup
α∈ IRd

|x(α)|. (1)

The expressionL1(IRd) stands for the normed linear space
ofLebesgue integrable complex-valued functionsxdefined
on the set IRd of real d-vectors, with the usual norm given
by

‖x‖1 =
∫

IRd

|x(α)| dα. (2)

As usual, when L1(IRd) is regarded as a metric space,
the elements of L1(IRd) are understood to be equivalence
classes. By convergence in L1(IRd), we mean conver-
gence to an element of L1(IRd) with respect to the norm
in L1(IRd). We use H to stand for the family of all linear
shift-invariant mapsH from L∞(IRd) into itself, such that
the restriction ofH to BL1(IRd) is a continuous map into
BL1(IRd), in which BL1(IRd) denotes the linear space of
bounded L1(IRd) functions, with the norm defined by (2).
The concept of an impulse response plays a role in the

interpretation of our main result. As is well known, the
d-dimensional extension of the concept of an impulse func-
tion as described by P. Dirac, while often useful in engi-
neering and scientific applications, is unsatisfactory from
the viewpoint of mathematics. It is unsatisfactory because
according to the usual theory of integration,

∫

IRd

q(α) dα = 0
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for any complex-valued function q defined on IRd with
q(α) = 0 for ‖α‖d > 0, even if q(0) = ∞ is allowed. 2
It is also well known, at least for d = 1, that an alterna-
tive approach (see, for example, [4]) involves envisioning a
sequence of progressively taller and narrower unit-integral
functions centered at α = 0. 3 In this spirit, but with no
attempt to adhere strictly to the concept of a generalized
function, we introduce the following definition.
The symbol Q denotes the family of BL1(IRd)-valued

maps q defined on (0, 1) such that, with q(ε) denoted by
qε, ∫

IRd

qε(α) dα = 1 for ε ∈ (0, 1),

sup
ε

∫

IRd

|qε(α)| dα < ∞,

and
lim
ε→ 0

∫

‖α‖(d) > ξ
|qε(α)| dα = 0, ξ > 0.

Note that q given by the familiar expression

qε(α) = 1/ε, |α| ≤ ε/2
= 0, otherwise

is an element of Q for d = 1.

It is reasonable to say, roughly speaking, that an ele-
ment H of H has an impulse response (or what might
more accurately be called a “q-response limit”) if for ev-
ery q ∈ Q we have Hqε well defined for each ε ∈ (0, 1),
with limε→ 0 Hqε existing in a meaningful sense and not
dependent on q. Our main theorem, Theorem 1, is given in
the following section. For the type of H addressed in the
theorem, and under conditions (i)–(iii) of the theorem, H
has an impulse response h in the precise sense that condi-
tion (ii) of the theorem holds [the limit in (ii) turns out to
be independent of q ].
Let η be a number in [1,∞). For each positive σ, let

Wσ be the map from L∞(IRd) to BL1(IRd) defined by
(Wσx)(α) = wσ(α)x(α), in which wσ ∈ BL1(IRd) with
wσ(α) = 1 for ‖α‖(d) ≤ σ and |wσ(α)| ≤ η, ‖α‖(d) > σ.

(e.g., wσ could be taken to be equal to 2 − σ−1 ‖α‖(d) for
σ < ‖α‖(d) < 2σ, and equal to 0 for ‖α‖(d) ≥ 2σ). Fi-
nally, givena ∈ L∞(IRd), we say that bσ assumed equal al-
most everywhere to an element ofL∞(IRd) for σ ∈ (0,∞)
converges inM∞(IRd) to a as σ → ∞ if we have

∫

A
|bσ(β) − a(β)| dβ → 0 as σ → ∞

2More specifically, with q(0) = ∞ allowed, the integral is
zero as a Lebesgue integral or as an improper Riemann integral.
In the remainder of the paper, all integrals are meant to be
interpreted as Lebesgue integrals.

3There is also a related theory of distributions [5] developed
by L. Schwartz and S. Sobelov around 1948, in which the delta
function is viewed as a linear functional on a certain type of
space of infinitely differentiable functions of compact support.
Distribution theory frees differential calculus from certain dif-
ficulties that arise because of the existence of nondifferentiable
functions. No use is made of these ideas in this paper.

for every bounded Lebesgue measurable subset A of IRd,
in which case we write a = limσ →∞ bσ (with the sense of
convergence understood; it is easily checked thatM∞(IRd)
limits are essentially unique). We do not distinguish be-
tweenM∞(IRd) limits that agree almost everywhere.

2.2 Criteria for the Existence of Convolution
Representations
Our main result is the following.

Theorem 1 : Let H be a linear shift-invariant map of
L∞(IRd) into itself. Then there is an h ∈ L1(IRd) such
that

(Hx)(γ) =
∫

IRd

h(γ − β)x(β) dβ (3)

for almost all γ ∈ IRd and every x ∈ L∞(IRd) if and only
if

(i) the restriction ofH toBL1(IRd) is a continuous map
into BL1(IRd).

(ii) For each q ∈ Q,Hqε converges in L1(IRd) as ε → 0.

(iii) Hx = limσ →∞(HWσx), x ∈ L∞(IRd) in the sense
of convergence inM∞(IRd).

Proof:
We use the following result given in [6] (see Theorem 1

there).

Lemma 1 : Let H be an element of H with the property
that

Hx = lim
σ →∞

(HWσx), x ∈ L∞(IRd) (4)

in the sense of convergence in M∞(IRd), and let q be an
element ofQ. Then the following two statements are equiv-
alent.

(a) Hqε converges in L1(IRd).

(b) There is an element h of L1(IRd) such that

(Hx)(γ) =
∫

IRd

h(γ − β)x(β) dβ (5)

for almost all γ ∈ IRd and every x ∈ L∞(IRd).

Continuing with the proof of the theorem, suppose that
(i)–(iii) are met. Then by (i) and (iii), H belongs to H
with (4) satisfied. Thus, by Lemma 1 and (ii), we have
(3). Conversely, suppose that (3) holds with h ∈ L1(IRd).
Condition (i) is satisfied because h ∈ L1(IRd). We see also
that (ii) is met, by the following lemma (which is a special
case of a corresponding result in [7]).
Lemma 2: Let q and h belong toQ andL1(IRd), respec-
tively. Then ∫

IRd

qε(·− β)h(β) dβ (6)

is an element of L1(IRd) for each ε, and it converges in
L1(IRd) to h as ε → 0.4

4Lemma 2 is related to results in [8, p. 149 ] and [9, p. 72 ],
and [8] gives references concerning other related results.
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Finally, let x be an element of L∞(IRd), and let A be a
bounded Lebesgue measurable subset of IRd. Consider

∫

A
|
∫

IRd

h(γ − β)wσ(β)x(β) dβ

−
∫

IRd

h(γ − β)x(β) dβ| dγ,

which, aside from a factor of supβ |x(β)|, is bounded from
above by

∫

A

∫

IRd

|h(γ − β)| · |wσ(β) − 1| dβ dγ

≤ (1 + η)
∫

A

∫

‖β‖(d) > σ
|h(γ − β)| dβ dγ. (7)

Using the assumptions that A is bounded and that h ∈
L1(IRd), the latter implying that

∫

‖β‖(d) > λ
|h(β)| dβ → 0

as λ → ∞, we see that the right side of (7) approaches zero
as σ → ∞. This shows that (iii) is met, and it completes
the proof.

2.3 Comments
Condition (iii) is essential (i.e., is not redundant) – even

though (ii) has the interpretation that for any q ∈ Q,H has
an impulse response in a very reasonable sense. This is a
consequence of the following result in [6], which is along
the lines of the theorem in [10].

Theorem 2 : There is an H ∈ H such that

(a) Hqε is the zero function for all ε ∈ (0, 1) and every
q ∈ Q.

(b) There are elements x of L∞(IRd) such thatHx is not
the zero function.5

The proof of Theorem 1 in [6] makes clear that when (i)–
(iii) hold, h in (3) is unique inL1(IRd), and that the limit in
(ii) is independent of q and equal to h. This, together with
Lemma 2, leads immediately to the following variation of
Theorem 1, in which attention is focused on h’s that are
well behaved in the sense that they are bounded.

Theorem 1′ : Let H be a linear shift-invariant map of
L∞(IRd) into itself. Then there is an h ∈ BL1(IRd) such
that

(Hx)(γ) =
∫

IRd

h(γ − β)x(β) dβ (8)

for almost all γ ∈ IRd and every x ∈ L∞(IRd) if and only
if

5In this theorem, “the zero function” means the essentially
zero function. There are several variations of the theorem. For
example, it is noted in [11] that, for d = 1, H can be taken to
be causal.

(i) the restriction ofH toBL1(IRd) is a continuous map
into BL1(IRd).

(ii) For each q ∈ Q, Hqε converges in BL1(IRd) as ε →
0.

(iii) Hx = limσ →∞(HWσx), x ∈ L∞(IRd) in the sense
of convergence inM∞(IRd).

Here (ii) can be replaced with: For some q ∈ Q, Hqε

converges in BL1(IRd) as ε → 0. And “each” in (ii) of
Theorem 1 can also be replaced with “some.”

Similarly, there is a continuous h inBL1(IRd) for which
(8) holds for almost all γ ∈ IRd and every x ∈ L∞(IRd)
if and only if (i) and (iii) of Theorem 1′ are satisfied and
there is a continuous ) in BL1(IRd) for which Hqε con-
verges in BL1(IRd) to ) as ε → 0 for some q ∈ Q. In
the Appendix we describe a result related to Theorem 1
concerning cases in which inputs belong to the normed lin-
ear spaceL∞(IR+) of complex-valued boundedLebesgue-
measurable functions defined on the nonnegative numbers
IR+. For those cases, no weighting-operator condition cor-
responding to (iii) arises.

2.4 Conclusion
For themost general family of linear shift-invariantmaps

that take L∞(IRd) into itself, we have given, in Theorem 1
of Section 2, necessary and sufficient conditions for the ex-
istence of convolution representations with integrable im-
pulse responses. In the Appendix a related result is de-
scribed concerning cases in which inputs and outputs are
defined on the half-line [0,∞).

3 Appendix
Here we describe a result related to Theorem 1 con-

cerning cases in which inputs belong to the normed linear
space L∞(IR+) of complex-valued bounded Lebesgue-
measurable functions defined on the nonnegative num-
bers IR+, with the norm given by (1) with IRd replaced
with IR+. We use BL1(IR+) to denote the normed lin-
ear space of bounded elements of L1(IR+), with the usual
L1(IR+) norm. The expression Q+ denotes the family of
all BL1(IR+)-valued maps q defined on (0, 1) such that,
with q(ε) denoted by qε,

∫

IR+

qε(τ) dτ = 1 for ε ∈ (0, 1),

sup
ε

∫

IR+

|qε(τ)| dτ < ∞,

and
lim
ε→ 0

∫

τ > ξ
|qε(τ)| dτ = 0, ξ > 0.

Note that q given by the familiar expression

qε(τ) = 1/ε, τ ≤ ε
= 0, otherwise
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is an element of Q+. Our result is the following.

Theorem 3 : Let H be a linear shift-invariant causal 6
map ofL∞(IR+) into itself. Then there is an h ∈ L1(IR+)
such that

(Hx)(t) =
∫ t

0
h(t − τ)x(τ) dτ

for almost all t ∈ IR+ and every x ∈ L∞(IR+) if and only
if

(i) the restriction ofH toBL1(IR+) is a continuous map
into BL1(IR+).

(ii) For some q ∈ Q+, Hqε converges in L1(IR+) as
ε → 0.

We omit our proof because it is a simple modification of
the proof of Theorem 1, using the following lemma instead
of Lemma 1.

Lemma 3 : Let H be a linear shift-invariant causal map
from L∞(IR+) into itself, such that the restriction of H
to BL1(IR+) is a continuous map into BL1(IR+), and let
q ∈ Q+. Then the following two statements are equivalent.

(a) Hqε converges in L1(IR+).

(b) There is an element h of L1(IR+) such that

(Hx)(t) =
∫ t

0
h(t − τ)x(τ) dτ, t ∈ IR+ (a.e.)

for every x ∈ L∞(IR+).

Lemma 3 is a part of Theorem 2 of [12].7

3.1 Related Results
There is a related body of results for the less complex

cases of linear shift-invariant continuous systems for which
outputs are bounded and inputs are drawn from Lp(IR+)
or Lp(IRd) where 1 ≤ p < ∞. In such cases, impulse
responses always exist as certain limits, these impulse re-
sponses belong to the space Lm(IR+) or Lm(IRd), respec-
tively, in whichm is the conjugate index of p, and convolu-
tion input-output representations always hold. See [7] for
the details.
For related material concerning the case in which out-

puts are bounded and inputs belong to the spaceC0(IRd) of
continuous complex-valued functions defined on IRd that
vanish at infinity, see [13]. In [13] one is led to a general
system representation that is a uniform limit of a convolu-
tion, and a necessary and sufficient condition is given under
which the limit reduces to a convolution.

6Shift-invariance and causality are defined in the usual
way.[12]

7We take this opportunity to correct two minor oversights:
In Section 2.1 of [12], the phrase “with the norm given by (1)”
should be replaced with “with the norm given by (1) with IRd

replaced with IR+.” And “η” just above (14) in [6] should be
replaced with “2η”.

As is well known, there is interest also in the frequency-
domain representation of linear systems. In [14] it is shown
that not all continuous linear shift-invariant systems are
characterized by their frequency responses (evenwhen they
exist), but that the members of a certain important large
family of linear systems are completely characterized by
their suitably-defined frequency responses.
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