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Abstract:-A systematic procedure to build up the parametric equations of the surface of a rotational mechanical part 
by Analytical Geometry is proposed.  The equations are exact and require no inequalities.  3D Plots are generated 
from these equations.  An example referring to a roller chain sprocket is presented. 
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1  Introduction 
Using Analytic Geometry exclusively, equations and 
plots were established to represent a polygonal 
cylinder and the main view of a chain sprocket [1], the 
former is a 3D plot and the latter a 2D plot.  It is only 
natural to take one further step: the parametric 
equations and plot of the surface of a 3D chain 
sprocket and these are presented in this paper.  But the 
development of the equations is quite systematic and 
applicable to a large class of mechanical rotational 
elements.  
 
 
2  Nomenclature 
 d     Roller diameter 

BD    Bore diameter 

HD   Hub diameter 
f      Flange thickness 

⎭
⎬
⎫

h
g

   Dimensions of the bevel of the teeth, Fig. 1 

 L       Axial length 
 P       Circular pitch 
 N       Number of teeth 

CR     Radial coordinate at the start of the tooth bevel, 
           Fig. 1 

Rr       Radial coordinate at the bottom of the tooth  
           root 

Tr        Radial coordinate at the tip of the tooth 
α        Angular coordinate at the tip of the tooth  

Cθ      Angular coordinate at the start of the tooth 
            bevel 
 
 
3  Mathematical Devices 
The  following mathematical devices will be used to 
assemble the sprocket equations. 
 
3.1   The Heaviside Unit Step 
Cauchy represented his limiting coefficient by the 
following equation, [2]: 
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but it turned out that this function is, in  fact, the unit 
step function named after Heaviside much later. 
Incidentally, for a period of time, the author thought 
that he had been the first to propose this 
representation. 
 
 
3.2   The Function Concatenation Procedure 
A composite function [3]: 
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May be expressed as the single concatenated 
equation: 
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this equation is valid from x = - ∞ to x = + ∞.  
 
 
3.3   The Reflect and Repeat Function 
The reflect and repeat function was proposed in 
Cartesian form in [4].  The following is the polar 
form, [1]:. 
 

[ ])cos(arccos1 θφ N
N
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T/2N π=  
 
    If in a function )(θf , θ is replaced by φ  the 
resulting function )(f φ  is made up of N identical 
lobes in the interval π2θ0 ≤≤ . The first lobe is 
made up of two symmetrical halves, i.e., the first half 
is identical to the initial segment of )(θf  from 

T5.0θ0 ==   toθ , and the second half is the 
reflection of the first half with respect to the radius at 

T5.0=θ . 
 

 
4   Derivation of the Sprocket Equation  
The following development will be presented in detail 
so as to bring out the systematic approach but, also, to 
make the paper more readable. 
    The method to establish the equation is based on 
the procedure required to generate a plot from it.  
    In the first place, since this work refers to rotational 
parts, it seems adequate to use cylindrical coordinates. 
The plot of the surface is generated by two 

parameters: s and θ.   Parameter s generates the 2D 
periphery of the radial cross section of the sprocket. 
The parameter θ rotates this periphery around the axis 
of the sprocket and, in so doing, generates its surface.  
As it rotates the form of the periphery varies, i.e., it is 
a function of θ. 
    The characteristics of the sprocket are defined by 

g,f,L,D,D,d,N,P BH  and h.  The quantities 
N,P and d are used to determine the tooth profile, 

)(r θ , in accordance to the Appendix.  The quantities 
g,f,L,D,D BH and h will be used presently to 

establish the revolving 2D periphery, Fig.1.  The axis 
of the sprocket coincides with the z axis. 
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From Fig. 1 the following relations are established. 
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Fig. 2. shows the two possible typical peripheries of 
the radial cross section, namely: 0,1,2,3,4a,5a,6a and 
0,1,2,3,4b,5b,6b,7b,8b, depending on whether the 
tooth radial coordinate r of the particular cross section 
is smaller or larger than CR  or equivalently whether 

the angular coordinate θ  is smaller or larger than Cθ . 
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Fig 2   
 
From Fig. 2 the lengths are established of the line 
segments that make up the revolving periphery: 
 

LL01 =  

BH12 RRL −=  
fLL23 −=  

Ha34 RrL −=  

fL a5a4 =  

Ba6a5 RrL −=    

HCb34 RRL −=  

µsin
wL b5b4 =  

w2fL b6b5 −=  

b5b4b7b6 LL =  

BCb8b7 RRL −=   (5) 
 
Using the previous lengths the values of the 
parameters  at the turns of the periphery are 
established: 
 

0s0 =  

0101 Lss +=  

1212 Lss +=  

2323 Lss +=  

a343a4 Lss +=  

a5a4a4a5 Lss +=  

a6a5a5a6 Lss +=  

b343b4 Lss +=  

b5b4b4b5 Lss +=    

b6b5b5b6 Lss +=  

b7b6b6b7 Lss +=  

b8b7b7b8 Lss +=   (6) 
 
The radius of the various segments of the rotating 
periphery are now expressed in terms of the 
parameter  s: 
 

B01 R=ρ  

1B12 ssR −+=ρ  

H23 R=ρ  

3Hb34a3434 ssR −+=== ρρρ  

ra5a4 =ρ  

( )a5a6a5 ssr −−=ρ  
( ) µρ cosssR b4Cb5b4 −+=  

rb6b5 =ρ  

( ) µρ cosssr b6b7b6 −−=  

( )b7Cb8b7 ssR −−=ρ    (8) 
 
The various segments of the “a ” circuit are now 
concatenated: 
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( ) ( )3423323122
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ρ
ρρρρ

−+
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     (10) 
Thus the equation for radius of any point in the “ a “ 
circuit is: 
 

( )a6a404a404a )s,s(H)r,s( ρρρρ +−+=    (11) 
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A similar process is carried out in connection with  
the “ b ” circuit: 
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     (12) 
( )b8b404b404b )s,s(H)r,s( ρρρρ +−+=  

                              (13) 
Thus the general expression of the radius of the 
revolving periphery is: 
 

( )baCa )r,r(H)r,s( ρρρρ +−+=       (14)  
 
Proceeding in an analogous manner in connection 
with the z coordinates: 
 

( )001 ssLz −−=  

0z12 =  

223 ssz −=  

fLzzz b34a3434 −===  

a4a5a4 ssfLz −+−=  

Lz a6a5 =  

( ) µsinssfLz b4b5b4 −+−=  

b5b6b5 sswfLz −++−=  

Lz b8b7 =     (15) 
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                 (17) 
( )a6a404b404a zz)s,s(Hz)r,s(z +−+=       (18) 

 
( )

( )
( )
( )b8b7b8

b8b7b7b6b7

b7b6b6b5b6

b6b5b5b4b5b5b4b8b4

z)s,s(H
zz)s,s(H
zz)s,s(H

zz)s,s(Hz),s(z

−+
+−+
+−+

+−+=θ

(19) 

                    
( )b8b404b404b zz)s,s(Hz)r,s(z +−+=      (20) 

 
and thus the  z  coordinate at any point of the  
revolving periphery  is: 
 

( )baCa zz),(Hz),s(z +−+= θθθ      (21) 
 
Replacing θ  by the polar reflect and repeat function   
φ , the polar parametric equations of the sprocket are 
obtained: 
 

),( φρρ s=   ),( φszz =     (22) 
 
or in Cartesian coordinates: 
 

θφρ cos),(sx =          θφρ sin),(sy =    
),s(zz φ=         (23)  

  
It is worth noticing that the last terms of Eqs. 
(10),(12),(17) and (19) have, respectively, the same 
effects as the following inequalities:  
 

0a6a4 =ρ  a6ss >    

0b8b4 =ρ  b8ss >  

0z a6a4 =  a6ss >  

0z b8b4 =  b8ss >   (24) 
 
These effects carry over to Eqs. (11), (13),(18) and 
(20) so that they have, respectively, the same effects 
as the following inequalities:  
 

0a =ρ  a6ss >    

0b =ρ  b8ss >  

0za =   a6ss >  

0z b8 =  b8ss > :  (25) 
 
Furthermore, these effects also carry over to Eqs. (14) 
and (21) so that they have the same effect as the 
following inequality: 
   

⎭
⎬
⎫

=
=

0z
0ρ

 b8ss >   (26) 
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But, it must be emphasized, that all these effects are 
already contained in Eqs. (10) to (14) and (17) to (21) 
thus neither inequalities (24) to (26), nor any other 
inequality, are part of the sprocket equations (22) or 
(23).   
      Eq. (26) establishes the point at which s stops to 
generate a surface. 
 
5  Example: a Specific Sprocket 
The parametric equations of an ASA, No.80 sprocket 
with 13 teeth will be established. 
The following are the teeth characteristics, [5]: 
 
N   = 13 
P   = 1”                = 2.54 cm 
d   = 0.625”         = 1.5875 cm  (27) 
 
The following are the sprocket dimensions,[6]: 
 
DH  = 3.03125”    =  7.699375 cm 
DB  = 1.5               =  3.81 cm  
L    = 1.5625        =  3.96875 cm 
f     = 0.575          =  1.4605 cm 
h    = 0.5              =  1.27 cm 
g    = 0.125          =  0.3175 cm    (28) 
 
Numerical values (27) are substituted in the equations 
of the Appendix and the resulting equation (A2) of the 
tooth profile as well as values (28) are substituted into 
equations (3) to (23) and thus the parametric equations 
(22) and (23) of the sprocket are obtained.  
 
 
5.1   Rendering of the Sprocket 3D Plot 
Attempts to obtain the sprocket equations and plot 
were made by use of Mathematica, Maple and 
Matlab, but only the attempt by use of  Mathematica 
was successful ( this may be partly due to the author´s 
greater  familiarity with the plotting procedures of this 
software) and it is the one presented here.    
    Now, both in the concept of the unit step and in Eq. 
(1) its magnitude at the “jump” is undefined.  
Nonetheless, plotting Eq. (1) in Mathematica, Fig.1,  
leaves a spurious vertical trace which is not the case if 
Matlab  is used, Fig. 2.  In Maple the user may 
determine whether this trace appears or not.    
 
 
 
 

 
Fig. 3 
 
 

 
 
Fig. 4 
 
It is convenient to plot Eqs. (11), (13), (18) and (20).  
Substituting the value of 0R == θθ  at the bottom of 
the root of the tooth as well as the value 

24166.0T === αθθ , (Eq. A1 of the Appendix) 
each in turn into  Eq. (A2) of the appendix,  yield the 
extreme values of the tooth radius: 
 

cm50508.4rR =  (29) 
cm08871.6rT =  (30) 

 
Substituting values (29) into Eqs. (11) and (18) yield  
 

aRRa )r,s( ρρ =  (31)  

aRRa z)r,s(z =  (32)  
      
Substituting values (30) into Eqs. (13) and (20) yield  
 

bTTb )r,s( ρρ =  (33)  

bTTb z)r,s(z =  (34) 
 
Fig. 5 are the superimposed plots of  Eqs. (31) and 
(33) and  Fig. 6 are the superimposed plots of  Eqs. 
(32) and (34). 
 

0 a
x0

1

H(x,a)

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp515-523)



5 10 15 20
s, cm

1
2
3
4
5
6
7
8
r , cm

 
 
Fig. 5 
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Fig. 6 
 
The use of  Mathematica in this work has resulted in 
the two spurious vertical traces at the end of the plots 
of Figs. 5 and 6.  A plot of  z from Eq. (14) vs. ρ  of 
equation from Eq. (21) for any specific value of  θ  
yields the radial cross section for that value similar to 
Fig. 2 but with a spurious line trace going from point 
8b to the origin.  Thus a 3D parametric plot of 
equations (22) or (23) yields the sprocket surface with 
a spurious cone inside its bore. 
     In order eliminate all of these spurious traces, 
instead of prescribing a stop of the parameter s at 
points 6a and 8b, Fig. 2 , a partial retracing  of the 
bore may be prescribed by adding the following 
elements: 
 

Bb9b8

Ba7a6

R
R

=
=

ρ
ρ

 

)ss(Lz a6a7a6 −−=  

)ss(Lz b8b9b8 −−=   (35) 
 
Using the previous equations, Eqs. (10) to (14), (17) 
to (21) respectively are modified thus: 
 

a7a6a6a6a4aM6a4 )s,s(H ρρρ +=              (36) 
( )aM6a404a404aM )s,s(H ρρρρ +−+=  (37) 

b9b8b8b8b4bM8b4 )s,s(H ρρρ +=        (38) 
( )bM8b404b404bM )s,s(H ρρρρ +−+=   (39) 

( )bMaMCaMM )R,r(H ρρρρ +−+=      (40) 
 

a7a6a6a6a4aM6a4 z)s,s(Hzz +=         (41) 
( )aM6a404a404aM zz)s,s(Hzz +−+=      (42)  

b9b8b8b8b4bM8b4 z)s,s(Hzz +=         (43) 

( )bM8b404b404bM zz)s,s(Hzz +−+=      (44) 

( )bMaMCaMM zz)R,r(Hzz +−+=          (45)           
 
Fig. 7 shows the superimposed plots of  Eqs. (37) and 
(39) and Fig. 8 shows the superimposed plots of Eqs. 
(42) and (44).  Figs. 1 and  2 are each the parametric 
plot of  Mz , Eq. (45) vs. Mρ , Eq. (40). 
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Fig.  8 
 
Fig. 9 is the parametric plot of  the following 
equations: 
 

θφρ cos),s(x MM =        
θφρ sin),s(y MM =   

 ),s(zz MM φ=    (46)  
 
An odd number of teeth was deliberately chosen to 
show that the figure need not be symmetrical as can 
be appreciated in Fig. 9.  To obtain a reasonably 
defined image it was necessary to specify a large 
number, 650, of plot points. This, in turn required a 
very large image because otherwise it would have 
been either very dark or reduced to a mere silhouette.
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6   Discussion and Conclusions 
It has been shown that it is possible to obtain the 
parametric equations of the surface of a relatively 
complex quasi radially symmetric object by the 
exclusive use of Analytic Geometry expressed in 
simple algebraic terms.  
      The representation did not include details 
such as a keyway or a fillet radius but it is easy to 
see that these would pose no big problem. 
      Although Mathematica proved to be very 
adequate for this purpose, the fact that the graphs 
containing a discontinuity produce a spurious 
trace required the equations to be slightly 
modified for plotting.  Since neither Matlab nor  
Maple leave such a trace, it is only natural to 
speculate that if the plots of such objects are ever 
obtained by use of these softwares it will be from the  
unmodified equations. 
      It is pertinent to point out that the equations 
obtained are not unique.  A different set of 
parametric equations would be obtained if the 
periphery of the transverse,  and not the radial, 
cross section of the sprocket was used to sweep 
the surface as it is displaced in the axial direction.  
    The author hopes that the surface equations 
obtained will lead to useful applications. 
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Appendix 
According to the ANSI standards the profile of the 
tooth of the sprocket is made of three circle arcs and a 
straight line segment, Fig. A1, [5].  The axis of the 
sprocket lies at the origin ( not shown ) to the left of 
the figure.    
     The arcs have centers at  points iO with 

coordinates )y,x( OiOi and radii iR , they start at 

points iP  with coordinates PiPi y,x  and Piθ and end at 
points 1iP+  where 4,2,1I = . The straight line 

segment goes from point 3P  to point 4P .  The 
following relations define these quantities in terms of 
the specifications N,P  and d.  The full profile of one 
half tooth is the curve 54321 PPPPP , [5], [1]. 
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Fig. A1 
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( )dD
2
1x 1P −= ;    0y 1P = ;     01P =θ

  

βsind8.0
2
Dx02 +=  

βcosd8.0y02 −=  
 

βsinR
2
Dx 12P −= ;  βcosRy 12P =    

2P

2P
2P x

y
arctan=θ     

 
 d8.0RR 12 +=   
 

)sin(Rxx 22O3P γβ −−=   

)cos(Ryy 22O3P γβ −+=  

3

3
3

P

P
P x

yarctan=θ  

 
αsindDx 4.15.004 −= ; αcos4.104 dy =  

      
)tan(ma γβ −= ;             3Pa3Pa xmyb −=  

)5.0tan(mb πγβ +−= ;       04b04b xmyb −=  
 

ba
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4P mm
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x

−
−

= ;              b4Pb4P bxmy +=  

4

4
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044P
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044P4 )yy()xx(R −+−=  
 
The following are the polar equations of the arcs: 
 

( ) ( )2
1

2
01

2
01

2
0101
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Ryxsinycosx
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θθ

θθθ
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2
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2
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2
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2
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2
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++=

θθ

θθθ
 

 
The equation of the straight line segment is:  

θθ
θ

cosmsin
b

)(r
a

a
34 −

=      

 
Concatenating the four previous equations the tooth 
profile equation is obtained, thus:  
 

{ }
{ })(r)(r),(H

)(r)(r),(H)(r)(r

34233P

23122P12

θθθθ

θθθθθθ

+−+

+−+=

{ })(r)(r),(H 45344P θθθθ +−+          (A2)
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