
Reduction of Interorganization Web Services Peers Incidents by
Deployment of Asynchronous Computing Environment Profile Unification

Methodology (ACEPUM)

KHALIL A. ABUOSBA, ASIM A. ELSHEIKH
Computer Information Systems Department

The Arab Academy for Banking and Financial Sciences
http://www.aabfs.org

JORDAN

Abstract: Web services are considered to be a major challenge for the information technology industry as they
emerge from integration of several technologies adaptable within different architectures and platforms. Web
Services are deployed within heterogeneous distributed environments; specifically B-2-B interactions are
considered to be critical-mission activities for all parties involved, the main goals of these services is to provide
a secured inter-organizational computing environment. We deploy web services on the web for the purpose of
achieving reusability, interoperability, and standards utilizations. Web services are based on interactions of
peers where loosely coupled systems interact in anonymous computing environments. WS environments are
considered to be more vulnerable to faults and incidents than tightly coupled services. In this paper; we
introduce a token-based methodology that is utilized for the purpose of quality assurance of the services
computing environments. We introduce the Asynchronous Computing Environment Profile Unification
Methodology (ACEPUM) to be used a vulnerability reduction methodology which to audit the environment
profile variables. This approach utilizes the idea of reducing surface of attacks by limiting number of active
resources within the environment.

Keywords: Web, services, Trust, Management, Security, agents, Vulnerability.

1. Introduction
Web Services deployment requires integration of the
XML-based WSDL, SOAP, and UDDI technologies
along with a dependable service container architecture.
These loosely coupled technologies form the basic
building block for any primitive web service; however,
delivery of a web service has additional requirements.
These requirements are Lifecycle Fulfillment,
Characteristics Conformance, Security Attributes
Fulfillment, and QoS attributes integration. Fig.1. One
purpose of introducing Web Services on the web is to
facilitate machine-to-machine interaction. Web Services
have added an automation factor to B2B
communications; it is expected that many
establishments will be moving from private EDI
systems to public global interoperable inexpensive Web
Services as soon as reliability and high QoS are
assured. As our interaction with data available on the
Net demands special processing and deduction
capabilities, the World Wide Web is emerging into a

more semantic technologies deployment where data
may be processed, shared, and reused across

Fig.1 Basic Web Services Components

organizations and communities boundaries using
metadata processing technologies. The W3C defines a
Web Service as "a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

processable format (specifically WSDL). Other systems
interact with the Web Service in a manner prescribed by
its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards" [1]. A
Web service is identified by a URI (Uniform Resource
Identifier) whose public interfaces and bindings are
defined and described using an XML component; its
definition can be discovered by other software systems.
Web Services are classified as Service Oriented
Architectures (SOAs). SOA is based on the notion of
building a software solution for an environment where
service providers and requester interacts in a
heterogeneous environment; this architecture is
deployed for the purpose of achieving high level of
abstraction, interoperability, reusability, and utilization
of standardized xml-based technologies. Services built
based on SOA methodology must conform to SOA
conformance properties. These properties include self
containment of service and self serviced, ability to
invoke the service dynamically, ability to locate the
service dynamically, services are network accessible,
and functionalities of service and modes of operations
are published as a service description document (service
contract), ..etc.

1.1 Out of scope of this research
It is not the scope of this paper to build or address
firewalls functionalities. We assume that all classical
and traditional security breaches are installed and
deployed such as firewalls, intrusion detection systems,
and encryption mechanisms. We assume that peers are
in conformance with the goals of secured computing
environment dimensions such as information
confidentiality, integrity, authenticity, and availability. It
is out of scope of this research to detect or test unknown
applications vulnerabilities using penetration tests or
otherwise. Finally it is also, out of scope of this research
address monitoring schemes of resources security.

1.2 The Scope of this research
Our focus of this research is to design an integrated
vulnerability management model/methodology that aims
to reduce the possibilities of occurrence of security
incidents at services endpoints. We introduce the
Asynchronous Computing Environment Profile
Unification Methodology (ACEPUM) as a collaborative
defensive measure where its functional operational goals
are in conformance with SOA-based web services
characteristics (listed in fig.1) deployable and
interoperable in coexistence with firewalls, IDSs, and/or
access control schemes resulting conveyance of trust
between endpoints and increase in reliability and
survivability of services.

1.3 Previous/related work
Reduction of security incidents involves vulnerability
management approaches such as software vulnerabilities
management and programming flaws maintenance.
Sandboxing technique was introduced as a containment
mechanism for executing untrusted code. It is
considered to be a component based methodology that
addresses seven different classes of the computing
environment components ranging from device, file
system, IPC, network, ptrace, signal, and including
system management. This work is based on enforcement
of a predefined security policy [2] that may be
incorporated in our approach. Incidents management
methods involve “identifying risk assessment variables”
and “identifying vulnerabilities” [3]. In the field of
vulnerabilities management several studies have been
conducted throughout the years, a notable risk
assessment methodology is the Subjective Probability
Assessment [4], the technique deploy a methodology for
assessing the probability of computer security incidents,
some major pitfalls are involved in this technique
including the possibility of faulty assumptions and
predictabilities as well as environment contradictions.
Alves-Foss and Barbosa introduced the System
Vulnerability Index to be computed for the purpose of
assessing the vulnerability of computer systems based
on the system security state [5]. Some of the drawbacks
of this methodology are complexity, overhead, and
requirements. Incidents management paradigms where
called for by Perrine and Singer such as incident
management software, mobile agents for the purpose of
collecting incident data and to make near real time
tracing of intruders practical, and Inter-site cooperation;
here, in the Inter-site cooperation, a question was raised
“How can multiple sites running heterogeneous (or no)
security software exchange incident data?” [6].
Mentioning these elements, the primary challenge is
trust conveyance between peers or clients and servers. It
is notable to say that none of the scopes or goals of the
previous studies provide neither interoperability nor
integration. Current deployable vulnerabilities reduction
techniques involve installation of local vulnerability
scanning software or remote vulnerability detection
services. Both mechanisms have drawbacks and pitfalls
ranging from inappropriate configuration, remote traffic
exchange, high overhead, and/or time consumption,
remote traffic congestion. One vantage of these
solutions is that they are built based on meta-data
standardized semantic languages such as OVAL,
AVDL, and XCCDF.

2. Web Services Security
“WS-Security describes enhancements to SOAP
messaging to provide quality of protection through
message integrity, confidentiality, and authentication.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

These mechanisms can be used to accommodate wide
varieties of security models and encryption
technologies” [7]. Several standards were defined for the
purpose of securing web services transactions, these
standards include WS-Security, WS-
SecureConversation, WS-Trust, XML Signature, WS-
Federation, Security Assertion Markup Language
(SAML), Extensible Access Control Markup Language
(XACML), XML Key Management Specification
(XKMS), along with the standard SSL/TSL protocols.
Specifically Security Attributes Fulfillment element is
the core interest of our research. Confidentiality,
Integrity, Availability and Authenticity are considered
to be the minimal list of any secured environment,
however in some cases we may drop the authenticity
and confidentiality attributes due to the nature of
information being processed; nevertheless availability
and integrity attributes are always (in all cases) required
for securing information. These two elements are
compromised by two classes of flaws, the first is class
is the environment vulnerabilities and the second of
theses classes is the programming-bugs class. These
flaws may be used by hackers and crackers to
compromise the integrity and availability of information
or services by several malicious attacks.

2.1 Security Incidents
Computer security incidents are defined by the US-
CERT as “the acts of violating an explicit or implied
security policy” [8]. In general web services
environment faces the same challenges that may effect
P-2-P connections and/or Client/Server architectures.
Web service environment is claimed to be secured if
and only if it is confidential, available and of integrity.
Web services endpoints may be compromised by all
standard networks threats; in addition, SOAP messages
or processors are threatened by xml-based exploited
vulnerabilities. Incidents are formed due to threats
executions derived from either programming flaws
(bugs) or environment vulnerabilities Fig.2. These
threats ranges from Message interception, Man in the
Middle Attacks, Session Replay Attacks, Spoofing,
Denial of Services Attacks, etc.. The foremost challenge
is the availability element; services must be available
before worrying about their integrity or correctness; of
course, this does not imply that integrity is of less
importance.

2.1.1 Software Vulnerabilities & Bugs
Computing environment vulnerabilities are defined as
“weaknesses in the computer system” [9].
Vulnerabilities are not considered to be harmful to
systems unless they are exploited by malwares; hence,
co-existence of a vulnerability and a malware is

Fig.2 Incident Flow Diagram

considered to be an immediate threat to the systems that
may lead to cause a violation of the security policy
(incident). Another source of threats are software bugs;
bugs are defined as programming flaws that may
compromise a computer system. From these threes
definition we conclude that incidents are results of
threats executions. Threats themselves are derived from
the existence of bugs and vulnerabilities. Web services
computing environment compress several technologies
into a single integrated communication link. These
technologies may be compromised by either
programming flaws (bugs) or component vulnerabilities
as per fig.2. In general; security incidents involved in
the web services environment are derived from
attacks/flaws against one or more of the resources that
composes the overall building block of a web service.
Using the (CVE) list; if we abstract the web service to
the semantic metadata based technologies such as XML
and SOAP excluding the operating system; we will find
that there are only forty nine unique XML incidents
identified and only nine unique SOAP incidents listed
[10]. Some of these SOAP incidents are container
specific such as CVE-2004-1816 which is a candidate
vulnerability that causes Denial of Service by
consuming/ on client/server, peer-to-peer, group or
others; they all face some common or uncommon
threats depending on threat nature. Appropriate
vulnerabilities management leads to threats reduction
and affirms more secured computing environment.
Handling Security vulnerabilities and bugs is
considered to be the major obstacle in information
delivery process in any computing environment within
all software design methodologies. As web services are
deployed based on SOA methodology and exhausting
the server memory where an attacker utilizes a
vulnerability associated with the container. Most of the
listed SOAP vulnerabilities in the CVE list are
architecture related. For example CVE-2005-2224
candidate is a platform/architecture specific. Some of
the listed vulnerabilities are based on scripts

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

programming; again causing an existence of a threat
that may lead to an incident. For any computing
environment architectures whether it is based
vulnerabilities management requires all the goals that
SOA provides; integrating a SOA based vulnerability
reduction methodology into the design of standard web
services will solve many of the problems involved in
securing special domain B-2-B interactions that may be
standardized to all other domains including B-2-Cs.

2.1.2 Environment Vulnerabilities Rating
Web services environments vary in their specifications
depending on architectural technologies and platforms
being deployed. Regardless of the deployment
architecture; web services computing environments are
characterized as being multi-tiers end-to-end
computational channels. Vulnerabilities reduction
techniques also vary on each tier. Preventative measures
must be taken at each endpoint. These measures may be
defined in security policies. Availability of services

2.1.3 Computing Environment Operating Policy
We define this policy as an enforcement mechanism for
ideal environment definition purposes. CEOP goals
include verification of minimum system configuration
conformance, minimization of number of active or
enabled resources and services, audit latest versions
installation. A major challenge arises here with a major
question how to deal with platforms heterogeneity?; a
first solution is to strict the interaction platforms; due to
the nature of web services of being a service provider
and a request interaction, we may deploy our provider
peers with any platform and bind our requester peer to a
certain specific platform to be specified in the WSDL
contract; a second solutions would be to audit most
popular environments of requester peers.

2.2 Security Maintenance Flaws
In any computing environment threats are defined as “A
set of circumstances that has the potential to cause loss
or harm” [9], on the other hand, bugs or programming
flaws are software errors, mistakes, failures, or faults in
a computer program that prevents it from working as
intended, or produces an incorrect result [11]; these
problems are resolved by debugging and installing up to
date patches. As a quality assurance measure, an
auditing of latest patches installation mechanism must
be deployed prior to service initiation.

3. Vulnerabilities reduction by
Asynchronous Computing Environment
Profile Unification Methodology
(ACEPUM)
The Peer-to-Peer (P2P) communication model is
characterized by dynamic symmetry: each party

exposes a set of comparable functionality and any party
can initiate a communication session at any time. [12].
Securing web services computing environment involves
securing endpoints as well as the communication
channel. Current existing protection technologies and
mechanisms such as firewalls and information
encryption deployments are minimal list for securing
any computing environment; however, the standard
technologies lack the ability to protect the environment
from already known or unknown threats. Threats may
arise from unpatched software, software as well as
miss-configuration is an immediate. We propose
deployment of a newly hybrid message based
methodology that acts as an operational trust
conveyance where computing resources are audited and
computing environment is minimized to its lowest
enabled number of resources prior services activation.
Asynchronous Computing Environment Unification
Methodology calls for generating an environment
identifier to be exchanged between services peers
calculated based on running resources and environment
identifier specified by services provider.

3.1 ACEPUM goals
Computing Environment Profile Unification
Methodology aims to provide a low overhead message
based solution using existing SOAP transporter. This
methodology is built to be in conformance with Web
Services Interoperability (WS-I) Basic Profile Version
1.0 where loose coupling is achieved. Using a
predefined ideal computing environment variables
defined for the purpose of minimizing the enable
computing resources. Minimization of resources in
operation reduces the surface of attacks on end points.
Auditing these resources may be utilized as versioning
checker as well as patches management tool. Auditing
must be performed without using remote scanning, as
remote scanning may compromise the system being
scanned as well as consume some of the bandwidth of
channels. The web services environment is described by
using the Extensible Configuration Checklist
Description Format (XCCDF) [13] specifications. Web
services environment, specifically at endpoint resources
are defined by using XCCDF specifications.

3.2 ACEPUM Vantages
Asynchronous Computing Environment Profile
Unification Methodology aims to provide a lightweight
low overhead message based solution using existing
SOAP transporter. This methodology is built to be in
conformance with Web Services Interoperability (WS-
I) Basic Profile Version 1.0. Using a predefined ideal
computing environment variables list, specified for the
purpose of minimizing the number of enabled system
resources. Minimization of resources leads to the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

surface of attacks reduction on endpoints. Auditing
these resources may be utilized as a quality assurances
procedure where operational requirements are audited.
Computing environments boundaries and perimeters are
specified by detecting enabled computing resources and
services. ACEPUM enable systems to define a more
secured environment ruled by dynamic computational
requirements and policies, ACEPUM may be also used
as a patch management tool. Auditing must be
performed without using remote scanning, as remote
scanning may compromise the system being scanned.
The web services environment is described by using the
Extensible Configuration Checklist Description Format
(XCCDF) specifications. Web services environment,
specifically at endpoint resources are defined by using
XCCDF specifications. ACEPUM vantages include
system environment auditing at runtime prior services
provision, less computational overhead, no significant
consumption of network bandwidth due to the fact that
scanning may be performed locally rather by a
vulnerabilities scanning services provider. ACEPUM
solutions may incorporate available standardized
Vulnerability Assessment Language vulnerabilities
management technologies such as Open (AVDL) and
Application Vulnerability Description Language
(AVDL) or may be integrated within these
technologies. Empirically we have tested several
systems with XCCDF-based auditing software (such as
RU-Secure software) on a local testing environment
without remote traffic involvement (local scanning) and
we found these tests acceptable, however remote
scanning using XCCDF-based software will be a major
deployment drawback. Integrating a CEPUM model
within such products will ultimately convey trust
between endpoints; as the exchanged token may be used
as a vehicle for authenticity, compliance and assurance.

Fig.3 ACEPUM identifier generatinon process

3.3 Defining Computing Environments by
Agency
In general, number of successful security incidents
proportionally increases with the increment of surface
of environment variables and channels; similarly by
nature interoperability calls for wider area of

computational operations as there are more resources to
be consumed; reflecting higher rate of vulnerabilities. In
any computing environment, the more we consume
resources and services the more we have probability to
compromise the system and, hence reducing
vulnerabilities may be achieved by defining an ad-hoc
computing environment. Due to the operational nature
of web services we have selected a multiagent
integration approach which allows us to address the
auditing and benchmarking requirements which may be
used as an operational trust enforcement mechanism.
There are two approaches/architectures are considered
to be suitable for web services environment; the first is
the reactive intelligent agents architecture and the
second is the belief-desire-intention agents architecture
[14]. Due to goals and purposes; we incorporate the
reactive agent architecture as we find it more suitable
for our strict discrete deterministic environment; a
looser and more flexible approach is the belief-desire-
intention architecture. .

3.3.1 Environment Characteristics
Projecting properties of task environment [14] on web
services computing environment; our description of an
endpoint of a web service environment may be
classified as an accessible, deterministic, episodic,
dynamic, and discrete environment. As we have
mentioned previously, our main goal of this research is
to reduce software vulnerabilities by imposing
limitations and rules on the computing environment; we
define our operating environment to be discrete and not
continuous as codes executions and management of
computing resources are effected by discrete events,
accessible and not inaccessible as environment
variables state in web services endpoints are accessible
and agents are able to obtain up to date information
about the environment variables, partially observable
and not fully due to remote traffic requirements for real-
time/near real-time vulnerabilities management,
deterministic and not stochastic due to the fact that
agent functionality and environment variables state are
based on predetermined definitions and declarations,
episodic and not sequential for the benefit of autonomy
of transaction depending on environment variables
state, and finally static and not dynamic due to visibility
factors as well as computational resources overhead
reduction

Fig.4 Proposed Ideal computing environment characteristics

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

3.3.2 Agents Characteristics
Our methodology proposes to incorporate a self
managing two-tiered agreement negotiator as addressed
by Brazier & Wijngaards [15]. A crucial element in the
model is building the enforcement agent based on WS-
Agreement specification. “The primary motivation for
creating a service agreement between a provider and an
agreement initiator is to provide assurance to the
agreement initiator on the service quality and/or
resource availability by the provider [16]. These agents
are characterized as self managing, self modifying, pro-
active, reactive, incorporates cross communications
capability with other agents, autonomic, and
collaborative as described in fig. 5.

Fig. 5 Properties of ACEPUM intelligent agents

We emphasize that the agent is collaborative and
autonomic due quality of service dependencies, network
performance related issues as well as SOA properties
conformance issues. Auditing and generating an
ACEPUM identifier synchronously from a remote
connection is possible, however online resources
auditing involves high overhead and may cause network
congestion, hence exchanging environment identifiers
as small SOAP messages that may be signed and
encrypted for the purposes of authenticity and
confidentiality security elements.

3.3.3 Resources Auditing & Environment
Benchmarking
Computing resources auditing and benchmarking are
based on XCCDF specifications. A service benchmark
identifier may be used as trust enforcement utility.

4. Auditing & Benchmarking
Computing resources auditing and benchmarking are
based on XCCDF specifications. A service benchmark
identifier may be used as trust enforcement utility.

5. Conclusion and Future Work
This methodology aims to reduce vulnerabilities in web
services computing environment where it utilizes
existing semantic technologies, complies by current
specifications, and provides a low overhead
interoperable solution without the need for remote
scanning operation. In future work, we are addressing
real-time/near real-time vulnerabilities updating,

building an interaction model for UDDI registries for
the purpose trust conveyance as well as identifying
possible ontology-based solutions.

6. References
[1] W3C, W S Arch., http://www.w3.org/TR/ws-arch/
[2] Peterson, Bishop, Pandey. A Flexible Containment
Mechanism for Executing Untrusted Code. In
Proceedings of the 11th USENIX Security Symposium,
pages 207--225, August 2002
 [3] Butler, S. A. & Fischbeck, P. "Multi-Attribute Risk
Assessment." SREIS 2002, 2nd Symposium on Req.
Engineering for Info. Security, Raleigh, NC, October
16, 2002, CERIAS, Purdue University, Lafayette, IN.
[4] Farahmand, Navathe, Sharp, Enslow, Managing
vulnerabilities of info. systems to security incidents,
ACM Proceedings of the 5th international conference
on E-commerce, Vol. 50, Pages: 348 – 354, 2003.
[5] Jim Alves-Foss, Salvador Barbosa: Assessing
Computer Security Vulnerability. Operating Systems
Review 29(3): 3-13 (1995)
[6] Perrine, Abe Singer, New paradigms in incident
management, New Security Paradigms Workshop,
Proceedings of the 2000 workshop on New security
paradigms, Perrine and Singer,Pages: 133 - 138
[7] Web Services Security (WS-Security)
Specifications,http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/
[8] Common Vulnerability Exposure, US Department
of Homeland Security, HTTP://www.us-cert.gov
[9] Security in Computing, 3rd Ed., Pfleeger, Prentice
Hall, 2003
[10] Common Vulnerability Exposure, US Department
of Homeland Security, HTTP://www.us-cert.gov
[11] WIKIPEDIA, http://en.wikipedia.org/wiki/
[12] J. Dale, D. Levine, F. McCabe, G. Arnold, M.
Lyell, H. Kuno, Advanced Web Services, September
2002, White paper presented at W3C Face-to-Face in
Washington, D.C.
[13] National Security Agency, Ziring, Specification for
the Extensible Configuration Checklist Description
Format (XCCDF), January 2005
[14] Weiss, Multiagent Systems, 3rd edition, The MIT
Press, 1999, page 42-71
 [15] Brazier, F.M.T., Wijngaards, Designing Self-
modifying Agents in computational and cognitive
Models of Creative Design V, pp. 93-112, December,
2001, University of Sydney , Gero, J.S. Maher, M.L.
[16] Dan,n Keahy, Ludwig, Rofrano, Guarantee Terms
in WS-Agreement Specifications, Version 0.1, January
2004,http://www-unix.mcs.anl.gov/~keahey/
Meetings/GRAAP/WS-Agreement%20Guarantee.pdf

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp80-85)

