
Performance Implications of Memory Management in Java

DR AVERIL MEEHAN
Computing Department

Letterkenny Institute of Technology
Letterkenny
IRELAND

 http://www.lyit.ie/staff/teaching/computing/meehan_avril.html

Abstract: - This paper first outlines the memory management problems that can arise in Java, and then proceeds
to discuss ways of dealing with them. Memory issues can have serious performance implications particularly in
distributed systems or in real time interactive applications, for example as used in computer games.

Key-Words: - Garbage collection, Java, Memory management.

1 Introduction
Problems with memory management range from
slowing execution to system crashes, and are
considered so serious that Java provides automatic
garbage collection. While this removes some of the
problems many remain [1]. Java memory
management issues are especially relevant for
developers who make significant use objects that
reference large structures on heap memory or where
rapid or consistent execution speeds are important.
This applies in particular to the gaming industry,
interactive real time applications, and to enterprise
systems.[2]. Memory problems in Java are identified
and approaches to solutions discussed.

A major advantage of object oriented programming
languages (OOPL) is the information hiding that
enables the programmer to work at a high level of
abstraction facilitating development and code reuse.
As objects are references to structures allocated in
heap memory, programs developed in OOPL’s can
make extensive use of the heap.

While there is a body of work that concentrates on
optimising compilation[3] or improving the garbage
collector [4,5], only solutions applicable at the level
of Java program code are considered here.

The next section outlines the kinds of memory
problems that can occur in a programming language
such as Java which has automatic garbage collection,
while section three considers how Java programmers
can best detect problematic sections of code, and
section four discusses what can be done about it. It is
important that any solutions do not negate the
benefits of information hiding which were the
impetus in developing OOPL’s in the first place. The
final section summarises the findings and makes
recommendations.

2 Memory Management Problems
In the context of programming, garbage is any
structure allocated in heap memory but no longer in
use, i.e. there is no reference to it from within
program code. Automatic GC removes the problem
of dangling references where memory is marked as
free for re-use while active pointers still reference it.

In Java the remaining problems are space leaks and
slow or varying computation. Scalability is an
important property of applications, but even if the
program is scalable in all other aspects, its GC may
not be scalable, and can cost a large percentage
increase in execution time.

GC in Java is carried out on a low priority thread.
This enables GC to make use of fee processor time,
but it still has a cost and will pause the program for a
short time. These costs can be significant in
programs where objects are large in number or
reference large structures on the heap [6]. For this
reason full GC is only carried out when:

• explicitly called in code, or
• memory resources become critically low.

Java uses the Hotspot GC which divides the heap into
generational sections, so that minor collections of the
younger Eden space quickly reclaim structures
references by short lived objects. Both the GC pause,
and their frequency are potential problem areas.

Space leaks are also problematic, and occur when
memory is no longer used, but has not been marked
free for recycling. This can become excessive until
memory is exhausted and the program crashes.
Space leaks can occur in lots of ways. Using static
objects inappropriately keeps them alive for the
entire program. Problems occur when this object
refers to a very large structure or to many others.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

The seriousness of space leaks are relative to their
size and the running time of the application. Small
space leaks present few problems in short running
applications that run on large memories. But even
these can cause problems if the application is scaled
up, or if it runs for a long time, e.g. on a server
continuously, so that small leaks accumulate and
eventually crash the system [7]. Even a few leaks are
problematic if objects refer to large structures on the
heap.

A more serious aspect is the difficulty in detecting
space leaks as they often do not show up until testing.
Fixing code late in development or worse, during
maintenance, is well known for being costly.
Unfortunately, being aware that a program has a
space leak is only the first step. Identifying the
section of code that caused the problem is
problematic as the cause is not where the problem
shows up [1, 7].

Even if the program does not crash, reducing
available memory slows object allocation so that
execution speeds can vary. Also there are likely to be
more calls for GC, with a corresponding drain on
efficiency.

The next section looks at how these problems can be
identified and the following section considers what
the programmer can do about these problems.

3 Identify Problematic code
The first step is to identify memory management
problems, the earlier in development the better. Only
then can something be done about it. Problem
indicators range from system crashes to more subtle
variable execution speeds over time.

The challenge is to monitor memory use while at the
same time connect this to what is happening in the
actual Java application code. It is too late when space
leaks cause a crash as the program exits with the
message:

Exception in thread "main"
java.lang.OutOfMemoryError: Java heap
space

The challenge is to detect problems much earlier
when something can be done.

3.1. Manual Inserts in Code
A global counter can be inserted into a class and
updated in the Constuctor to indicate the number of

objects of this class that have been allocated on the
heap. In Java the finalize() method can be overridden
to release resources such as sockets or file
descriptors, and it is called just before garbage
collection. Decreasing this counter in the classes’
finalize() method means that the counter reflects the
number of live objects, and can be checked at any
point in the code. Alternatively, two counters can be
used, one to record allocations, and one to record
those that are available for GC. There is a snag with
this however. The finalize() method leaves the
object ready for GC, but there is no guarantee when,
or even if, GC will occur.

It is important to monitor memory that is available
for an application. This can be achieved using the
freeMemory() and totalMemory() methods:

Runtime r =
Runtime.getRuntime();
float freeMemory = (float)
r.freeMemory();
float totalMemory = (float)
r.totalMemory();

System.out.println("Total
Memory = " + totalMemory);
System.out.println("Free
memory = " + freeMemory);
System.out.println(((totalMemo
ry - freeMemory)/1024) + "K
used");

This has the following output when run on a
windows OS:

Total Memory = 2031616.0
Free memory = 1868432.0
159.35938K used

These extra lines of monitoring code are relatively
simple to do. They could be put into a method that
dumps the information, with appropriate comments
to identify where the method was called from, to a file
for later processing.

This is useful for giving an overview of the whole of a
program, for example comparing memory use of
objects at the beginning, at key points and also at the
end of program execution. But the information is
limited, omitting useful details such as the GC
algorithm used, or how the different heap spaces are
utilised.

Fortunately it is also possible to monitor garbage
collection and memory usage in other ways.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

3.2. Using Command Line Arguments
The garbage collection command line argument
verbosegc can be used to diagnose problems with
garbage collection. The output gives information on
the garbage collector as well as occupancy of the
young generation, and of the entire heap before and
after a collection as well as the length of pause while
GC was carried out. At the command line:

java
 -verbosegc
 -XX:+PrintGCDetials
 <CLASSFILENAME>

or using a jar file:
java
 -verbosegc
 -XX:+PrintGCDetials
 –jar <JARFILENAME.jar>

This results in output of the format:

[GC [<collector>: <starting
occupancy1> -> <ending
occupancy1>, <pause time1>
secs] <starting occupancy3>
-> <ending occupancy3>,
<pause time3> secs]

Unfortunately this generates a lot of data. For a small
test program that ran 8 seconds, 19 pages of statistics
were generated. Wading through this would reveal
what was happening at every instance of the program,
but unless print statements are inserted at specific
points in the code (these will be output along with the
GC statistics) matching the statistics to specific
sections of code is difficult.

3.3. Java Monitoring and Management API
From Java 1.5, the Java Monitoring and Management
API provides a way to monitor memory usage and
GC statistics. There is much more to this API, but
only these aspects are considered here. This includes
the monitoring programs jstat and JConsole [8] as
well as Mbeans. These are briefly outlined here.

The jstat command prints statistics on garbage
collection, but is not available on all platforms. (It
was previously jvmstat) It is used on the command
line with the identifier for the executing JVM, for
example:

jstat -gc <jvmid>
(Gives information on how the various
sections of the heap are used as well as the
number and times of GC.)

The identifier of the JVM can be obtained by using
jps at the command line. The problem here is the
program has to be running to obtain its identifier,

which can cause difficulty with short running
programs. Inserting a temporary pause or a infinite
loop will keep the program alive for this testing
purpose if necessary. Results can be appended to a
text file to make it easier to use them later.

C:\mmtest>jstat –gcutil 1608
 >> gcresults.txt

Among several alternative parameters for jsat
include -gccapacity (for statistics about
capacities of different regions in heap memory)
-gcutil (for a summary of GC statistics). The
information available with this tool is very detailed,
including the number and extent of GC; the usage of
different generational sections of the heap; time taken
etc.

jstat gives information at the end of execution, but
it is often useful to know what is happening every
time GC is called (as shown for example using the
-verbosegc option).

JConsole is a GUI tool that sits on top of the new
Monitoring and Management API, providing
information on memory use, garbage collections,
threads, classes, and Mbeans. JConsole uses JMX to
monitor the JVM and can be used either locally or
remotely. To use it on the localhost

java
–Dcom.sun.managementjmxremote
<PROGRAM>

starts the PlatformMBeanServer. JConsole
graphically displays the various MemoryPools of
Eden, Perm Gen, Survivor and Tenured Gen. This
tool is useful for detecting low memory, enabling and
disabling GC, using verbose tracing, and using
Mbeans [9, 8].

The Java management Extension (JMX) API is now
integrated with J2SE. GC monitoring is achieved
using Mbeans, java objects which represent
resources. When an Mbean is registered in a Mbean
Server it becomes an agent.

Sun’s java.lang.management contains many useful
classes that can be used to monitor memory levels.
For example the MemoryMXBean includes the
interface

javax.management.NotificationE
mitter

which can be used for notifications of the type:
 MEMORY_THRESHOLD_EXCEEDED

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

which can be implemented on a thread. Other useful
Mbeans for monitoring GC are:

GarbageCollectorMXBean,
MemoryManagerMXBean,
MemoryPoolMXBean
MemoryMXBean

For example:
public interface
GarbageCollectorMXBean extends
MemoryManagemnetMXBean

This interface can be used to detect the total number
of collections (getCollectionCount()) and
the time this took (getCollectionTime())

MBeans can be used to send a warning message when
memory levels become low. When this was tried, it
worked well in some test programs, but in other tests
the warning message often did not occur, or if it did it
was too late to prevent a crash.
3.4. Memory Profile Tools
Memory profile tool such as JProbe Memory
Debugger or GCspy provide graphical output that
represents the usage of the heap as a program
executes. Such tools slow down execution too much
to be used in a final product but they are useful during
development to highlight problem areas.

Visual tools graphically chart heap use as peaks and
troughs as objects are created and destroyed. Usually
a program will increase memory use until it reaches a
peak, then oscillate between peaks and troughs that
remain relative constant. If the peak level of heap use
increases steadily the application has space leaks
because it is keeping structures referred to by objects.
This could be the nature of the program or it could be
that objects are not released so that the garbage
collector can free them.

Another danger sign is frequent occurrences of GC
which do not significantly increase the level of
available heap, and/or GC which takes a long time.

For example in Quest's JProbe break points in the
code are indicated as lines on the graph making it
easier to connect the display with the code itself. This
tool indicates what objects are live at whatever point
in the execution is being studied. Sometimes an
object has been deleted in the code but is still
referenced by another variable. If this is the problem,
then JProbe will show that object is still there. Using
JProbe’s Reference Graph it is possible to identify all
objects that reference this object. It is then a matter of

trawling through these and looking for the code that
references it.

Another example is Visual GC which does not come
with JSE as standard on all platforms, but for JSE 5
download jvmstat 3.0 which includes it. Although
VisualGC is a very useful tool, it’s use is not
straightforward. If the developer is using an IDE it is
necessary to begin execution of the program, switch
out of the IDE to the command window, run the jps
command to get the vmid, which is then uses to run
visualGC. This is a problem that may soon be sorted,
for example Eclipse already allows VisualGC to be
used within it and downloading Milestone 2 enables
Visual GC integration in Netbeans (only version 4.0
or newer releases).

4 Finding Solutions
Once the information on memory usage and GC has
been gathered, and the problems identified it is then
possible to use this to rectify the problems and to
improve efficiency. This sections considers the
various approaches to solving GC problems and
assesses them in terms of their ease of use, their
effectiveness and how well they keep the information
hiding which is the motivation for using OOPL in the
first place

These solutions are either implemented by making
amendments at the level of the code, or by fine tuning
GC itself.

4.1 Program Code
Once the problematic areas of code are identified it
may be possible to do something at the code level.
For objects that remain live after they are no longer in
use, simply setting them to null may not always solve
things, especially if the structures they reference are
very large [10].

While it is important to avoid a system crash with the
OutOfMemoryError, the information gathered on
memory levels described in the previous section can
be used to make sure a program never runs very low
on available memory. To call the garbage collector
explicitly:

Runtime r =
Runtime.getRuntime();
r.gc();

Davis [11]suggests object pooling where a generic
abstract class is used to handle storage and tracking
while the concrete subclasses deal with instantiation,

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

validation an destruction as needed. This approach
resulted in an 88% reduction in execution time in a
real time application.

Another approach at the code level is to use abstract
class Reference and subclasses, SoftReference,
WeakReference and PhantomReference.
Garbage collection can occur even if these references
refer to an object. A ReferenceQueue can be
used to register soft, weak or phantom reference
objects (in the case of phantom references it must be
used). These can be used for monitoring and also for
control of the order that references are freed[12, 13].

The disadvantages of modifications to program code
include an increase in complexity and loss of
information hiding.

4.2. Use Adaptive GC Ergonomics

It is possible to manually fine tune GC. Command
line options and environment variables can be used to
alter the memory management behaviour of Java’s
Hotspot GC on both Client virtual machines (VM)
and Server VM’s to modify defaults such as the heap
size, whether parallel GC is enabled, upper time limit
for GC, time ratio of GC to application time, etc.
Often an advantage in one area will be at a cost in
another, hence any decisions need to take an overall
view.

For example, the size of the heap has an effect on the
frequency and timing of GC. It can also have a
bearing on fragmentation. If the heap is too small
there can be fragmentation problems, and more
frequent GC. On the other hand if the heap is too
large, GC may not occur as often but when it does, the
time for collection can be excessive. The choice of
heap size needs to consider peak loads to be able to
cope with these. The aim is to reduce frequency of
GC by considering:

• the size of young and old generations -
increasing young generations will reduce the
frequency of GC but will increase the duration
of pause

• the load on the heap – the faster the heap fills,
the greater the frequency of GC

• the life-time of objects – live objects take up
space, so an increase in lifetime increases the
frequency of GC. Best to keep lifetime to a
minimum

It is possible to fine tune GC with respect to young
generation, old generation and survivor space sizes as
well as the tenuring threshold. Increasing the size or
the heap and/or increase the upper time limit allowed

for GC. Setting command line flags can be used to
achieve this, e.g.

-XX:MaxGCPauseMillis=n

-XX:GCTimeRatio=n

Unfortunately it is not always clear which
adjustments are the most beneficial, and what works
for one program may not be the best approach for
another. It is often a matter of priorities, deciding
what is important for a particular program. It may be
necessary to experiment

The default choice of garbage collector is often fine,
especially for uniprocessor or relatively small
programs, but may not necessarily be best in
programs that use a large number of threads,
processors and/or sockets, or which involve a large
amount of allocated memory on the heap.
Java now allowa the programmer to select a garbage
collector to suits a particular application. This is
important because Java applications range from
desktop programs that run on a single machine to
distributed systems, so the use of allocated memory
on the heap can be very varied.

In order to make an informed choices about GC it is
important to understand how the various approaches
to garbage collection operate and how allocated heap
memory is organised in Java. For a particular
program, the programmer needs to consider the way
that allocated memory is used when that program is
executed.

If the pauses for GC of the young space is too long,
using the parallel young generation collector can be
helpful in reducing them. This is selected using the
following command option with verbosegc:

-XX:+UseParallelGC

or
-XX:+UseParNewGC

If the pauses for major GC are too long, using the
concurrent mark sweep low pause collector can help:

-XX:+UseConcMarkSweepGC

The use of adaptive GC ergonomics can have a
significant effect, yet does not interfere with the
development process. This has the major advantage
that the developer can work at a higher level of
abstraction, which is the motivation for using an OO
language [14].

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

5 Conclusion
Even if memory problems are not suspected it is
useful to check for them. Testing should include
running programs for long periods of time to
highlight small space leaks that could potentially
become a problem. While Java’s new memory and
management API is valuable here it is in the
provision of JConsol that best eases the process of
performance tuning GC. Using a graphical profiling
tool is the easiest way to monitor memory usage and
yields faster results than manually inserting
debugging code or dumping GC information to the
screen or to a file. Other commercially available
graphical memory profiling tools are equally useful,
but may require leaning a new skill-set.

Once the problems have been identified, it is
important to work on a solution. This is where tools
are less useful, and programmer knowledge essential.
Any solution will need to be cognisant of how the
Hotspot GC works, what the memory management
problems reveal about what is happening in the
memory as the code runs, and the requirements of the
particular development project. Often there will not
be any one clear solution, but compromises will be
needed. Such judgements are beyond presently
available tools, which are most useful for providing
information on memory use, and for indicating
success or otherwise of changes that might be tried
out.

Hard coding memory management code into a
system detracts from the abstraction and information
hiding which make object oriented programming
languages so easy to use. It is best if a solution can be
found that operates independently of the code.

References:

[1] A.Meehan, Java Garbage Collection – A Generic

Solution?, Information and Software Technology
Vol.43, 2001, pp. 151-155

[2] A Pankajakshan, Plug Memory Leaks in
Enterprise Java Applications, 2006
www.javaworld.com/javaworlk.jw-0302
006/jw-0313-leak_p.html

[3]T. Suganuma, T.Yasue, and T.Nakatani, A
Region-based Compilation Technique for
Dynamic Compilers, ACM Transactions on
Programming Languages and Systems, Vol. 28,
Issue 1, pp. 134-174, January 2006.

[4] Y. Levanoni, E. Petrank, An On-the-fly
Reference-counting Garbage Collector for Java,

ACM Transactions on Programming Languages
and Systems, Volume 28 , Issue 1, 2006.

[5] D.Bacon, D.Attanasio, H.Lee, S.Smith, Java
without the coffee breaks: A nonintrusive
multiprocessor garbage collector, Proceedings of
the SIGPLAN 2001 Conference on Programming
Languages Design and Implementation. ACM
Press, pp 92-103, 2001

[6]D Sosnosk, Smart object-management, 1999
http://www.javaworld.com/javaworld/jw-11-199
9/jw-11-performance_p.htm

[7] J. Patrick, Handling Memory Leaks in Java
Programs, 2001
www.128.ibm.com/developerworks/java/library/j
-leaks/

[8] R. Donepudi, Use a Profiler to Make Your Java
Apps JVM-Friendly, 2005

 www.devx.com/Java/Article/30264
[9] M. Chung, Using Jconsole to Monitor

Applications, 2004
java.sun.com/developer/technicalArticles/J2SE/jc
onsole.html

[10] J. Shirazi, Nulling Variables and Garbage
Collection, 2002
www.javaspecialists.co.za/archive/Issue060.html

[11] T. Davis, Improve the robustness and
performance of your ObjectPool,
http://www.javaworld.com/javaworld/jw-08-199
8/jw-08-object-pool.html

[12]M. Pawlan Reference Objects and Garbage
Collection, htpp://developer.java.sun.com,
Aug.1998.

[13] A Dãncus, Garbage Collection For Java
Distributed Objects, MSc Thesis, Worcester
Polytechnic Institute, 2001.

[14] A Meehan, Garbage Collection and Data
Abstraction Based Modular Programming, PhD
thesis, University of Ulster, 1999.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)

