
 Intelligent “Health Restoration System “: Reinforcement 
Learning Feedback to  Diagnosis and Treatment Planning 

 
O. D. KARADUMAN 1, A. M. ERKMEN 2, N. BAYKAL3 

Informatics Institute 1, Electrical and Electronics Department 2 
Middle East Technical University 
İnönü Bulvarı, 06531, Ankara  

TURKEY 
o

 
Abstract: - In this study we develop a decision support architecture that evaluates pathology findings for defining levels 
of chronic hepatitis B, and models patients’ clinical stages for assisting treatment decisions. It is a learning system that 
generates a feedback to pathological diagnostic as well as to the clinical decision making by using reinforcement 
learning techniques. The system receives reinforcement from the patient as a consequence of undertaken actions during 
a treatment plan. This received information leads system to learn from experiences such as the patient’s response to the 
treatment and evaluations of related parties (pathologist and clinicians).  
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1   Introduction 
Chronic liver disease including hepatitis B is quite 
common in the world. Hepatitis is a liver inflammation 
that may causes damage to hepatocytes. The severity 
may range from healthy carrier to decompensated 
cirrhosis. There are several studies on the diagnosis of 
hepatitis [1,2,3,4,5,6]. These studies are mainly focused 
on the diagnosis and the prognosis of the disease. 
However, defining the severity level of hepatitis and 
evaluating alternative treatments are important 
components of medical care processes that do not exist, 
yet, in the literature but still need to be considered.  
 
The aim of our study is to imbed such component in an 
intelligent decision making architecture. Consequently 
we develop a hybrid methodology for supporting 
diagnostic decision and treatment planning processes in 
chronic hepatitis B, and provide a novel structure for 
evaluation of the patient response to alternative 
treatments by staging disease severity.  This architecture 
has gained more robustness in its performance by a 

reinforcement learning two level feedback system that 
helps pathologist (second level) diagnostic tuning and 
clinicians (first level) clinical treatment tuning according 
to the patients need by monitoring and evaluating their 
response to treatment. In the clinical level feedback, 
results of treatment are evaluated and a reinforcement 
signal, indicating the change of the patient’s health level, 
is produced. Based on this signal, a feedback is send 
both to the treatment planning module in the first level to 
modify treatment administration and clinicians opinions 
about the patient. At the second level, a reinforcement 
feedback is also provided to the pathologist to modify 
their diagnostics on such disease cases if their 
performance is found to be poor.  
 
We thus create a cascaded architecture (figure 1) 
composed of 1) a Fuzzy Inference System to assess 
pathology grading and staging, 2) an Artificial Neural 
Networks to learn and classify the severity of disease, 3) 
a Markov Decision Process to suggest an optimal policy 
for treatment. As illustrated in Figure 1, the proposed 

Figure 1: System Components 
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architecture integrates by bridging the diagnostic 
decision of the pathologist to the treatment decision of 
the clinician.  
 
The system receives semi-quantitative tissue observation 
from the pathologist; assesses the grading and the level 
of severity information by utilizing the fuzzy inference 
system (FIS). It carries out the final diagnostic decision 
by artificial neural networks (ANN), and also grading 
the severity of the disease handles vagueness in the 
nature of such decision making by the combination of 
FIS and ANN. 
 
2   Methods 
Learning from experience, and self tuning is an 
important aspect of the designed system. The basic 
novelty of our architecture is to provide a complete 
diagnostic and treatment planning system, especially 
having a learning feedback to clinicians and pathologist 
from the responses of the patient to treatment using 
reinforcement learning techniques. This feedback is a 
multi resolutional loop, not only furnishing data to 
modify the clinical treatment process but also to modify 
diagnostics at the pathology level for increased 
efficiency in similar future cases. Initial system 
parameters are based on a-priory domain knowledge and 
are subsequently automatically tuned by the learning 
mechanism of our structure, as new cases arise 
accompanied with success and failures of taken 
diagnostic and treatment decisions. 
 
There are four families of learning methods in the 
literature, characterized by the differences in information 
source used for learning [7]. In our work we use 
reinforcement learning techniques that do not use an 
explicit teacher or supervisor, and are based on an 
internal evaluator, or critic, capable of evaluating the 
dynamic system performance [8]. In our model an ANN 
produces this evaluation. Since, the ultimate goal of the 
medical practice is to leverage a patient’s health state, 
we base reinforcement on signs of body responses such 
as test results as well as evaluations of patients and 
clinicians within a treatment program.  
The main strategy in reinforcement learning is to 
estimate the utility of taking actions in states of the 
world. Utilities that refer to success of the treatment are 
assigned by the experts.  Learning has to find an optimal 
behavior (meaning a policy) that optimizes an evaluation 
function expressed in terms of reinforcement. There are 
various algorithms for learning to generate an optimal 
policy, such as adaptive heuristic critic, TD(λ) and Q-
learning [9]. In this study we implement a Q-learning 
algorithm that considers discounted sum of 
reinforcements coming from taking an action in a state 
(planning a treatment for a state of a disease).  

 
In hepatitis B biopsy is the gold standard for evaluation 
of liver disease. Pathology results are useful not only in 
diagnosis but also in grading disease severity and staging 
disease progression. However the reading of the liver 
biopsy remains quite subjective. [10]. Therefore fuzzy 
methods are used to address this problem of vague 
knowledge due to the linguistic nature of the domain 
[11]. A fuzzy rule base system is implemented to infer 
the grading and generate the state information of the 
patients’ health. However, there are no explicit rules 
available in literature for classifying the severity level of 
chronic hepatitis B. Therefore in our work, the proposed 
system learns to classify this severity using an ANN 
trained by experimental data. Received from a FIS, this 
cascaded FIS and ANN subsystem generates the levels 
of severity of the disease as its output. 
 
In our study we represent clinical state changes of the 
patient using MDPs to model the sequential treatment 
decision making under uncertainty, taking into account 
both outcomes of current treatment regimen and future 
treatment planning. Treatment planning methods 
involves the ability to predict the interplay between the 
natural history of disease and the effects of clinical 
actions over a prolonged time. Most common 
formalisms of this problem are decision tress and 
influence diagrams, temporal belief networks, Markov 
Decision Process (MDPs) and Partially Observable 
Markov Decision Process (POMDPs). [12,13,14].  
 
3. Proposed Architecture 
Our system architecture is composed of four cascading 
modules (figure 1) namely FIS performing the pathology 
grading and staging of diagnostic decision, ANN 
classifying severity levels of chronic hepatitis B on the 
patient, MDPs representing clinical states of patients and 
suggesting treatment policy, and lastly reinforcement 
learning that enable the system to learn from experienced 
cases and sends two level feedback that tunes treatment 
planning of clinicians as well as diagnostic performance 
of pathologist through reinforcement obtained by patient 
responses to the given treatment.  
 
3.1 FIS for Pathology Grading and Staging 
Grade defines the severity of the hepatitis B disease. 
Liver tissue is evaluated according to following criteria: 
Degree of portal inflammation, Limiting Plate damage 
due to the inflammation, Hepotositic necrosis (confluent 
or focal), Fibrosis (from mild to cirrhosis), and Extend of 
the inflammation 
 
Pathologists describe their observations with a linguistic 
term (fuzzy label) such as ‘some’, ‘most’, ‘continuous’, 
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etc. There are several histological classification schemes 
and scoring systems used in chronic hepatitis reporting 
[15]. Modified Ishak HAI scoring and grading system is 
one of them. In this study we use HAI, and with the help 
of a pathology expert, we transform the semi-
quantitative descriptions of the HAI scoring system into 
if-then rules of our FIS module. HAI system has four 
grading and one staging score that we represented in our 
system if-then rules, such as; “If ‘limiting plate damage’ 
is mild and ‘extend of the inflammation in portal areas’ 
is focal then ‘Per portal or perispetal interface hepatitis’ 
grade is 1” 
 
FIS rule based is composed of 30 rules where  
Ri :  ith rule of rule base 
SN:   input variables 
Lij:  linguistic term (fuzzy label) of input variable Sj 
in rule Ri. Its membership function denoted by µL 
YN: output variables, grades and scores 

 
FIS uses Mamdani type trapezoids and minimum 
operator as a fuzzy implication operator, and max-min 
operator for composition while centroid method is used 
for defuzzification.  Matching degrees of fired rules are 
obtained from: 
α Ri (S)= max[min (µL1 (S), µL1’ (S)), …. ,min (µLn (S), µLn’ (S))]    

                (1) 
FIS outputs calculated according to the firing strength of 
the rules are:  
Y(S)= Σ α Ri (S)   (2) 
Figure 2 demostrates the decision surface for periportal 
or Perispetal Interface Hepatitis grading.  

 
 
Figure 2: Decision Surface for grading A  
 
3.2 ANN for Classifying Severity Level 
Severity of chronic level of the disease is one of the 
main input data for clinicians. Severity is estimated by 
using grading and state values of the disease. We use an 
ANN with supervised training in cascade with FIS to 
classify levels of chronic hepatitis B. ANN inputs are the 
different grades and stage of the diagnosed disease while 

the outputs are chronic disease is absent, minimum, 
mild, medium or severe.  
 
3.3 MDPs Formalization 
Clinical state of the patient is formalized as MDPs. MDP 
is a stochastic control process and formally corresponds 
to a 4-tuple (S, A, P, R), [7] 
1) S is a finite set of process states (patient states) 
States are either level of disease or patients’ reaction to 
the therapy.  
Set of states in this study is: S:{Chronic Absent, 
minimum, mild, medium, severe, Complete Response, 
Partial Response, Breakthrough Response, Transient 
Response, Transplant Accepted, Transplant Rejected, 
Death }. Initial state is as received from the ANN 
module. 
2) A is a finite set of actions (diagnostic and treatment 
procedures) 
In this study, the action set represents the available 
treatment types such as: {Wait, Interferon Treatment, 
Lamivudine Treatment, Adefovir Treatment, Transplant} 
Action sets gives possible treatment actions for each 
disease level state.  
3) P: SxAxS [0, 1] is a set of transition probabilities 
between states that describe the dynamics of the 
modeled system  
At each time step t, the agent observes the current state 
St and selects and action At from the set of possible 
actions corresponding to that state. When action is 
triggered the system state at the next time step is St+1 
with the probability P St,St+1(At). Transition probabilities 
among states are:  
Pa

SS’= Pr{ St+1 = s’ | St =s,  At=a} (3) 
 
4) R: SxAxS  R denotes a reward (cost) model that 
assigns rewards to state transitions and models payoffs 
associated with such transitions. 
Each state has an assigned reward value R [-100,100]. 
Expected value of next reward is:  
Ra

SS’= E{ Rt+1  | St =s,  At=a, St+1 = s’ } (4) 
 
3.4 Reinforcement Learning 
In this reinforcement learning model, the agent is 
connected to its environment: patient responses to 
treatment via perception and action. Perception is based 
on observations of physician and test results such as 
biochemistry, serology, or pathology. Actions are 
treatment options of the clinician, such as drug 
treatments, transplantation or just waiting. And 
environment is defined as health of the patient. At initial 
step, state of patient’s health (chronic level of hepatitis 
B) is determined by classification of test results. Based 
on this information, physician suggests an action. 
Clinician is free to select treatment procedure either 
taking into account the system suggestion or determining 
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independently another policy. On each step of 
interaction the physician receives an input that is some 
indication of the current state of the patient. Then he/she 
chooses an action, treatment, to be administered. The 
action changes the state of the patient, and the value of 
this state transition is communicated back, evaluated by 
a scalar reinforcement signal, r. 
 
3.4.1 Learning in the Treatment Planning 
The action choice in each state is determined by a policy. 
Policy is a mapping from states to actions and is here 
denoted by π . Value of a state under a policy π  is 
donated by Vπ (S) and calculated with an evaluation 
function that represent the sum of all primary 
reinforcement functions received during a finite number 
of time steps.  
Vπ (S)= Eπ [ Σ n 

t=0
  γ t r(St, π (St)) |S0=S]  (5) 

 
Model of optimality determines how an agent should 
take the future into account for the decision it makes 
about its present behavior. Finite horizon, infinite 
horizon or average reward models can be used for such 
optimality [16]. In our approach, we make use of 
immediate reward. A policy π  is defined to be better 
then other policy π ’if expected return is greater than π’ 
for all states. Value of taking action in state s under 
policy π is denoted by Qπ(S,A). Under optimal policy: 
Q* (S,A)= E {r t+1 +  γ V* (S+1)| St=s, At=a } (6) 

 

In our model, Q value gives us how to behave optimally 
in a specific state. For any state of the patient, there can 
be numerous alternative treatment decisions.  Treatment 
decision is taken by considering both the immediate 
reward (r t+1) and value of any possible successive state 
(V*). Suggestion of system is based on these calculated 
Q values.  
The immediate reward is a scalar signal which is 
received when action is done. In our model immediate 
response is produced by an ANN. Inputs of that ANN 
are biochemistry and serology test results, clincians and 
patient evaluations. 

 
3.4.2 Learning in Classification of the Diagnosis 
Disagreements often occur between pathologist and 
clinician. Chronic level classification being subjective, it 
generally varies from school to school. Clinician might 
argue that, result of classification is inconsistent with 
other test results. Therefore, he/she might take the liberty 
to plan the treatment based on different initial state. In 
such cases where clinical self initiative is taken and is 
followed by successful treatment results being, there is a 
positive feedback to the diagnostic level for tuning the 
diagnostic classification system. The diagnostic level 

ANN tunes for better diagnostics of future cases based 
on the successful experience of clinical self initiatives. 
If we denote result of diagnostic classification by s and 
clinicians initiative s′ for any case j, the desired and 
actual outputs of ANN can be defined as dj(n)= s′ and 
yj(n)=s respectively.  
Weights of ANN are updated as follows:  
∆w= - η σ E(n) / σ wij(n)  (9) 
By means of updating weights, pathological diagnosis 
classification is tuned with the reinforcement learning 
feedback obtained from clinical treatment, and the 
system learn to harmonize pathologist’s and clinician’s 
views and successful experiences.  
 
4. Results 
4.1 Pathology Test Decision Making 
Test results are carried in Gülhane Military Medical 
Academy (GATA) Hospital, Ankara. Diagnostic 
decisions are carried out using 16 patient cases. 
However, only two of them could be tracked down to 
clinical treatment level. Pathology findings under the 
close guidance of pathologist in GATA were collected 
for the 16 cases. Observations with fuzzy expressions 
were evaluated by the fuzzy inference systems.  
 
The resulting grade and stage scores are then classified 
by the ANN.  Table 1 gives the results of pathology 
grading by FIS and chronic severity level classification 
by ANN of two patients who are tracked down to the 
clinical treatment level. In following part of this section, 
we will present optimal treatment policy evaluation and 
two level reinforcement learning feedback for tuning 
system parameters based on these two patient data. 
 
Table 1: Classification of Chronic Level 
 Periportal/pe

riseptal 
interface 
hepatitis 

Conflue
nt 
Necrosis 

Focal 
Spotty 
necrosi
s 

Port
al 
Infla
mati
on 

Chronic 
Level 

Patient 1 4 0 1 4 Severe 
Patient 2 2 0 0 1 Minimal 

 
4.2 Clinical Decision Making 
4.2.1 Optimal Behavior Model 
Optimal behavior model provides the information on 
how the agent should take the future into account in the 
decision it makes about its present behavior. In the 
clinical decision making human agent (clinician) 
evaluates the initial state of hepatitis B disease and 
generates feasible actions as future possibilities. As 
mentioned in the previous section of ‘Proposed 
Architecture’, there are 12 distinct states and 5 available 
actions for the treatment of the chronic Hepatitis B 
patients. Finite horizon model with 3 future steps is 
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applied for the optimal behavior selection. In the model, 
V gives the optimal value function for each state and P 
gives the optimum policy. Model run with 0.009 
learning rate which indicates a more future benefit 
oriented approach. Obtained V and P matrices are 
presented in Table 2. 
 
Table 2: Optimal Value Function and Policy  
(discount rate: 0.009 ) 

 
Absent 
Minimum 
Mild 
Medium 
Severe 
Comp.R 
Partial R. 
Breakt. R 
TransientR 
Trnspl. A. 
Trnspl.R. 
Death 

V=   
271.0000  190.0000  100.0000        0 
  160.6820  102.2000   41.0000       0 
   87.3425   47.4500   20.0000         0 
  115.7398   50.5145         0             0 
  177.8700  121.1700   58.8000       0 
  270.0000  189.0000   99.0000       0 
         0         0         0         0 
         0         0         0         0 
  149.0765   80.5100    9.5000         0 
         0         0         0         0 
         0         0         0         0 
         0         0         0         0 

P= 
     1     1     1 
     1     1     1 
     1     1     1 
     2     2     1 
     2     2     2 
     1     1     1 
     1     1     1 
     1     1     1 
     3     3     3 
     1     1     1 
     1     1     1 
     1     1     1 

 1: wait  
2: interferon treatment  
3: Lamivudine treament 

 

According those results of Table 4, best policies for 
disease ‘absent’, ‘minimal’ and ‘mild’ initial states are to 
‘wait’. And for disease ‘medium’ and ‘severe’ states 
‘Interferon treatment’ is suggested. If transient response 
is observed ‘lamivudine treatment’ is given. For 
example, under the optimal policy, a patient with 
medium hepatitis should be treated with interferon 
treatment, and if any partial response observed treatment 
should continue with lamivudine treatment.  
 
4.2.2 Reinforcement Learning 
Case 1: Treatment Planning System Performance 
Tuning: Feedback to Clinical Level 
In this case, MDPs is tuned by a reinforcement learning 
that is implemented by using Q learning rules. Q 
learning maps states to actions such that, in each state, 
there is a Q-value associated with each action. The 
definition of Q-value is the sum of the (possibly 
discounted) reinforcement received when performing the 
associated action and then following the given optimal 
policy thereafter. The transition rule of this Q learning 
is:  
Q(state, action) =  
R(state,action) + γ Max[Q(next state, all actions)]  (10) 
 
In the Q matrix, row represent states and columns 
represent actions. In our case, patient 1’ state is ‘severe’ 
then we search values of possible action in that state. 
Table 3 presents this row of the Q matrix which presents 
action values for ‘severe’ state, calculated with the 0.009 
learning rate. Action values for the ‘severe state’ is 
calculated by addition of rewards matrix (R) to the 
maximum value of Q for all action in the next states 
multiplied by learning parameter γ (10). 

 
Table 3: 
Q severe= 

0 58,8 25,5 -20,4 48 
wait interferon iamivudine adefovir transplantation 

 
As it can be observed from Table 6, suggested action for 
this ‘severe’ state is ‘interferon treatment’ with 58.8  
action value. However the domain expert disagreed and 
decided to apply policy 3: ‘lamuviden treatment’. After 
that treatment is applied he/she receives reinforcement 
from the patient as an immediate response to treatment 
in the form of a reward (r(severe, lamuviden)=0,2 ) via 
ANN. Then Q values are updated with this 
reinforcement information as follows: 
Q(severe, lamuviden treatment)= r(severe, lamuviden) + 
0.009 maxQ( complete R, breakthrough R; partial R )  

 
The new Qsevere row is presented in Table 4. 
Table 4:  
Qsevere= 

0 58,8 26,93 -20,4 48 
wait interferon lamivudine adefovir transplantation 

 
Consequently treatment planning system at the clinical 
level has learned from experiences, receiving a positive 
reinforcement value; Q matrix for chronic severe state 
with ‘lamuviden treatment’ is thus a slightly higher 
value 26.93 with the corresponding row, through the first 
level reinforcement feedback. 
 
Case2: Diagnostic Classification Performance Tuning 
In the second case, feedback is send to both clinical 
treatment and pathology level. In this situation patient 
2’s chronic level is classified as ‘minimum’ by the 
diagnostic system. However, the clinician disagrees: 
When she evaluates other findings such as serology test 
results, she is convinced that this second patient is at 
level Mild. Medical treatment is based on her judgment, 
and system produce treatment suggestion with Mild 
initial state such as yielding the raw of table 5 in the new 
Q matrix: 
 Table 5:  
Qmild = 

20 1.4 0 0 0 
wait interferon lamivudine adefovir transplantation 

 
Suggested action for this initial state is ‘wait’ (20). 
However the clinician chooses ‘interferon treatment’. 
After that treatment is applied to the patient, an 
immediate reinforcement signal is received via the ANN 
as (r=0.4) hence being a positive reward. This generates 
a feedback which is sent to update the treatment policy 
as: 
Q(mild, interferon treatment)= r(severe, interferon) + 
0.009 maxQ( complete R, partial R, medium ) 
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New Q value is as shown in Table 6: 
 

Table 6:  
Qmild = 

20 2,7 0 0 0 
wait interferon lamivudine adefovir transplantation 

 
Similar to case 1, positive reinforcement increases the 
value of applied treatment and ‘interferon treatment’ is 
thus slightly updated to a higher value 2.7 through the 
first level reinforcement feedback. 
Second feedback is send to the pathology classifier 
ANN. In this case, the input vector is the grading scores 
of the FIS: xi: [2,0,0,2] 
Actual output of the ANN is: yj(n)=Medium 
As a result of the received treatment feedback, the 
desired output becomes: 
dj(n)= Mild 
This new case is added to the training set of the ANN 
and the classifier is retrained. Weights are updated with: 
∆w= - η σ E(n) / σ wij(n) 
Therefore, clinical experience obtained from clinical 
treatment is feedback to the classification of diagnosis 
and both treatment and diagnostic decision modules are 
tuned. 
 
5 Conclusion 
Our system not only integrates diagnostic decision and 
treatment planning problems making health restoration a 
continuous activity from the diagnostic carried out by  
the pathology to the treatment planning of the clinician; 
both, diagnostic and treatment planning are tuned and 
harmonized by a reinforcement feedback resulting from 
the patient response to treatment.  
Our system learns from experiences via two level 
feedbacks that acts as a critic based on reinforcement 
learning. There, Q learning is used that assigns a value 
of taking an action for a particular state. When there is a 
disagreement between pathology and clinic decisions, 
clinician’s decision is monitored and if it is successful, a 
reward feedback is returned to pathology diagnostic 
module. As a consequence the system has more 
robustness learning from cases involving both the 
treatment decision and the diagnostic decision. 
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