
 1

A Top-Down Visual Approach to GUI development

ROSANNA CASSINO, GENNY TORTORA, MAURIZIO TUCCI, GIULIANA VITIELLO
Dipartimento di Matematica e Informatica

Università di Salerno
Via Ponte don Melillo – 84084 Fisciano

ITALY

Abstract: - In this paper, we propose an advance in the field of computer-aided development of interactive
applications, which consists in a methodology that integrates the advantages of graph-based design with a visual
construction of software applications using component assembly mechanisms. We have exploited such technique
enhancing the visual approach to develop the graphic and interactive features of an application interface presented
in TAGIVE (Tool for the Aided Generation of Interactive Visual Environments). The top-down development
approach prevents possible incorrectness and incompleteness error. The visual development model for both static
and dynamic aspects makes more intuitive the design and the implementation. This has the effect to support novice
programmers in the development of software applications while reducing expert designers’ workload.

Key-Words: - user interface design, graphical environments, interactive applications, event management,
correctness and completeness.

1 Introduction
Traditionally, general-purpose programming
languages, such as C and C++, have been employed by
skilled programmers to develop user interfaces. In
recent years a large number of software tools have
been proposed to reduce time and effort needed to
develop interactive systems, providing support to rapid
GUI prototyping as well as to system development [5].
However, most of such tools still lack a clear-cut
separation of concerns between the user interface
design and the development of the underlying
interactive application. As a matter of fact, apart from
a set of common widgets with predefined interactive
behaviors, the implementation of the system dynamic
behavior upon user’s interaction, remains a difficult
task, which requires programming experience.
The present research aims to extend the degree of
support that GUI developers receive from a user
interface development environment. We present a
methodology to design and implement interactive
visual environments, simple to use, flexible and which
requires a limited knowledge in the field of graphical
programming and a short training period. TAGIVE
(Tool for the Aided Generation of Interactive Visual

Environments) is the prototype system that
implements the proposed technique. The tool was first
introduced in [1] and has now been enhanced with a
module for the event management, which better
supports a visual approach to the construction of
interactive applications. When developing an
interactive application, a directed labeled graph is used
to provide a top-level design of the interactive flows
characterizing the application. Then, starting from that
top-level design, the tool is able to customize the event
handler module, so that all the features related to an
event (i.e., the source object, the action performed on
it, and its effect on the application itself) can be easily
detailed on a usable form-based interface. The unified
framework characterizing TAGIVE integrates the
advantages of graph-based design with a visual
construction of software applications using component
assembly mechanisms.
The static features and the dynamic behaviors of the
target application are formally specified at a high
abstraction level, in terms of a grammar model, named
Attributed SR-Action grammars, introduced in [2] to
describe interactive visual languages. Such grammars
consist of rules that model the system transitions upon

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

 2

user interaction, adequately capturing the dynamics
and evolution of the system. Such a formal
specification of the interactive visual application is
useful to perform automatic checks on correctness and
completeness of the development process1.
The rest of this paper is organized as follows. Section
2 describes the proposed methodology to design
interactive visual applications and presents an
overview of the architecture of the current system
prototype. Section 3 shows how TAGIVE supports the
suggested methodology on a sample interactive
application. Section 4 explains how correctness and
completeness in the developed application are ensured
by the system. Section 5 contains a discussion on
related work and Section 6 presents some concluding
remarks.

2 The two-level design approach
Before describing the top-down development
methodology characterizing TAGIVE, we need to
explain the terminology used. For the purpose of our
work, an interactive visual application is defined as a
set of scenes and a set of external components, related
to each other on the basis of the interactions
performed. A scene is made up of elementary
components representing interface widgets and
arranged on the scene according to a certain layout.
Each elementary component appearing in a scene is
said to be dynamic, if some event is associated with it
or static otherwise. External components are instead
referred to any file that can be invoked by some
dynamic component of a scene (e.g., image files, text
files, video clips, sound files, web pages, etc.). Fig. 1
sketches the structure of an interactive visual
application. Such a model is exploited in the system in
order to allow the two-level approach in the
application design and development. The former level
is focused on the between-scene or scene-to-external
component interactions, while the latter details such
interactions in terms of the dynamic components
composing each scene, with the possibility to switch
from one level to the other at any time during the
development process.

1 A description of the formalism is out of the scope of the present paper,
but the reader who wishes to get further insight on such aspect may contact
the authors, who would be happy to provide the complete formal definition
of the visual languages those grammars are able to specify, and examples of
interactive systems formally specified.

Fig. 1 - Structure of an interactive visual application.

The design methodology employed in the system
integrates the advantages of a graph-based design
technique with the benefits coming from a visual
construction of applications using component
assembly mechanisms. Such integration is aimed at
supporting the development of interactive visual
applications by directly relating the design phase to the
implementation phase. As a matter of fact, a graph-
based design approach is used to build the “application
map”, in terms of a top-level transition diagram
representing all the possible interaction paths. Indeed,
oriented and connected graphs are a very good means
to design and examine the number of scenes and the
best interaction paths of an interactive visual
application. For example, in an e-learning application,
a designer may build the application map, so that any
student shall eventually cross a certain scene, or reach
a certain scene through established paths. The idea
underlying the proposed methodology is that the
application map directly guides the development of the
interactive application. The implementation is based
on a component assembly technique applied to the
different scenes and on an event-handling mechanism
used to implement inter-scene interactions. The
generated interactive visual application prototype is
expressed in terms of an XML-based language, which
provides the additional benefits of a portable and
version resilient application.
Fig. 2 shows an overview of the architecture of the
current system prototype. The two levels of the
development process are implemented by means of the
Map Editor and the Scene Editor, respectively. The
double-ended arrow connecting the two modules
indicate that an iterative process is possible when
developing the interactive application, which allows
for a desirable incremental approach based on user’s
feedback.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

 3

Fig. 2 - The proposed system architecture 2.

As shown in the figure, besides the main development
environment, the system exhibits a formal grammar
environment. In fact, as a “side effect” of the overall
development process, it also generates the formal
specification of the developed interactive visual
application, in terms of the SR-Action grammar model.
The use of a grammatical formalism allows us to
express the interactive application in terms of a formal
visual language, specified by a complete set of
syntactic and semantic rules which precisely describe
the structuring of any scene and the dynamic
mechanism characterizing the associated interactions.
Such a formal specification of the interactive visual
application is useful to perform automatic checks on
correctness and completeness of the development
process. However, for the sake of brevity, we have
decided not to describe the grammar formalism and its
benefit here, but rather focus on the Visual
Development Environment characterizing the system
prototype. In the following section we outline its basic
architectural components and provide a description of
the whole development process on a simple example
of interactive visual application.

3 The visual application development
We illustrate how the designer may use the TAGIVE
to build an interactive visual environment, in a guided
and fully visual manner, on a sample interactive
application. Suppose the designer wants to develop an
application whose storyboard is sketched in Fig. 3. Its
main scene represents a classroom where certain
interaction paths can start. In particular, in the
Teacher’s Desk scene an action performed on the

2 The shape indicates a tool module. The shape indicates a

graphical visualization unit of an interactive visual application. The shape
 indicates formal specification documents. The arrow
denotes the interconnection between tool modules. The arrow
denotes the production of an output.

central teacher image should cause a video clip to play,
whereas an action performed on the bottom-right
button should cause a transition to the Student View
scene. Once there, the user may traverse the exit door
to terminate the application, or the right-hand door to
move to the School Library scene. In the School
Library, if an action is performed on the central
librarian, a new video clip about the borrowing
policies is triggered. If a click is performed on the
switch button on the left of the door, the spotlight at
top of the scene is switched off. Finally, if the door of
the library is traversed, the initial classroom scene (i.e.,
Teacher’s Desk) is reached again.

Fig. 3 - The storyboard of a sample application.

Starting from the design process, the designer draws
the structure of the application by operating within the
application map, adding, modifying or deleting nodes
and connections between them. This is done within the
Map Editor (see Fig. 4), which provides the graph
editing work area (the Work Panel) that allows the
designer to include nodes in the graph, which visually
represent the scenes or external components of the
application, and directed edges, which represent the
interaction relationships between them3. Thus, the map
nodes could represent containers like panels, and
frames, or objects like multimedia clips, sounds,
pictures, and web pages. All such components are
represented by icons which can be selected from the
Components List, provided by the editor. As for the
edges, they are labeled using items taken from the
Action List, which contains the actions that can be

3 Presently, we are facing the problem of keeping effective
the map visualization, as the number of the nodes and the
the number of edges increase. We plan an improvement of
the Map Editor module to manage several view levels of
the “sub-maps” representing the subsystems composing the
overall application.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

 4

used to define the interactions between pairs of scenes
or between scenes and external components.
Moreover, cycling edges are used to define intra-scene
interaction. Thus, for example the click performed on
the spotlight switch in the School Library scene, is
represented in Fig. 4 by a loop transition on the
corresponding node.

Fig. 4 - The application map.

At formal level, in this phase, TAGIVE identifies the
start symbol, the terminal, the non terminal symbols
and the set of actions which will characterize the
interactive behaviour of the application being
designed. Such elements will be used by the system to
define the initial form of the underlying SR-Action
grammar [2]. Moreover, for each edge in the map, the
system keeps track of the corresponding source node
and, afterwards, uses such information to perform
automatic checks for correctness/completeness when
the designer terminates the language specification task.
When the application map is finished, for each node
representing a scene, the designer exploits the Scene
Editor to add the necessary elementary components to
the corresponding container. In particular, for each
scene, in a visual manner the designer selects the basic
frame or the panel that represents a scene, from the
Containers palette of the Scene Editor and then, by
the Property Handler frame shown on the left, he/she
specifies the corresponding physical attributes (e.g.,
the background colour or image, the size, and the
name.). From the Elementary Components palette,
he/she drags visual objects to be positioned in the
frame (i.e., widgets such as buttons, labels, menus,
etc...) and manages the associated properties from the
Property Handler frame. Fig. 5 shows the
construction of the first scene of the example. The
second and the third scenes are developed analogously.

Fig 5. - Implementation of the scene Teacher’s Desk.

Each elementary component appearing in a scene is
said dynamic if the designer associates an action to it.
In this perspective, to guarantee correctness in the
development process we propose a top-down
technique to control the insertion of actions in any
scene. In particular, the designer establishes at the map
level the actions that will be allowed within a scene. At
the lower-level (the phase of the scene development),
those actions will be the only feasible actions the
designer may associate to each dynamic component in
order to detail the related event. To do so, he/she first
selects the Events item from the Control Panel
dropdown list of the Scene Editor. As a result, the
Event Handler displays a form, by which the designer
can specify the desired interaction in a visual manner.
As an example, Fig. 6 shows the visual
implementation of the event corresponding to the
transition from Student View to School Library.
In particular,
− The first field in the Event Handler form allows

to select the Source Object (i.e., the dynamic
component receiving the action) from the list of
elementary components featuring in the scene. In
the example, the source object is the door1 label of
the scene Student View.

− The second field, named Target Object, is used
when the action causes changes of attributes in
some elementary component of the same scene,
which is not the case for the considered action.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

 5

Fig. 6 –The “Open a New Scene” event.

− The Actions field allows to select the action from
the list of possible actions associated with the
chosen source object. In the example, a
“Single_L_Click” action may be associated to the
label door1 of the Student View.

− By means of the Events field, the designer can
indicate the type of event associated with the
action, selecting among “Open a New Scene” (as
in Fig. 6), “Change Property of an Object”, and
“Launch an External File”.

− The field Scene indicates the target scene that is
reached from the source scene, when the action is
performed.

If the type of event associated with an action is
“Launch an External File”, the designer specifies the
corresponding path, possibly activating the Search
button of the Path field. Due to space limits, we do
not show all the images corresponding to the given
example, but a complete demo of the system can be
downloaded from our web site at the URL
http://www.dmi.unisa.it/people/vitiello/.
In the application map shown in Fig. 4 a loop
transition labelled “Single_L_Click” goes out from the
Scene3 node.
Then, at the development lower level the designer can
to manage an event corresponding to a change of
properties of an object in the same scene. In this case,
he/she selects the option “Change Property of an
Object” in the Events field of the Event Handler
form. Let us consider again the example of the single
click on the switch button in the School Library,
which causes the spotlight to be switched off.
Actually, such event corresponds to the change of the
icon image representing the spotlight at the top of the
scene. Fig. 7 shows two steps that allow to manage the
implementation of this type of event in a totally visual
manner.

(a)

(b)

Fig. 7 –The“ Change Property of an Object” event.

The designer first selects the source object, the target
object, whose properties should be modified, the
action and the type of event to manage (see Fig. 7.a).
Then the designer clicks on the Accept button and the
system displays the Property Handler corresponding
to the target object. Once he/she sets the new property
values, he/she presses the Apply button to confirm the
event management specification (see Fig. 7.b). If the
designer wants to modify the properties also of other
objects in the scene, he selects another element in the
Target Object field and remakes the process
described before.

4 Correctness and completeness checks
The described methodology aids the designer in the
development of an interactive visual application
guaranteeing correctness and completeness of the
process and preventing possible errors from the first
stages of design. In particular, the presence of nodes
not connected to the others in the graph underlines
scenes or files expected but not achievable in the
visual environment. Again, edges representing
interactions, which have not been specified at the
lower level, will be highlighted in the map.
The formal specification of an interactive visual
application is useful to perform automatic checks on
correctness and completeness of the development
process. As a matter of fact, the two phases in the
construction of an application, namely the production
of the Application Map and the detailed composition

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

 6

of its scenes, correspond to two different phases of the
formal specification. In particular, starting from the
Application Map, the set of nonterminal symbols
representing scene nodes, the set of terminals
representing external file nodes and the set of actions
representing edges, are generated. Moreover, the
association of each edge in the map with the
corresponding source and target nodes is internally
stored. Such information is later exploited by TAGIVE
to directly control the lower level of the construction,
i.e. the composition of each scene and the management
of the events occurring in it. This allows the system,
throughout the development phase, to prevent
incorrectness and to check for completeness of inter-
scene interactions.
It is worth noting that apparent nondeterministic
situations may arise from two edges labelled by the
same action which stem out of one node in the map,
e.g., two “Single_L_Click” edges stemming out of the
same scene node. In such a case, TAGIVE, would
prevent the designer from associating the same action
twice with the same dynamic component in the source
scene. Thus, once a “Single_L_Click” action has been
associated with a button in the scene, and the
corresponding event has been managed, any other
attempt to associate a “Single_L_Click” action with
that button would fail. Of course, the second
“Single_L_Click” action may instead be associated to
any other dynamic component in the scene.

5. Related work and final remarks
Several graphical toolkits and user interface
development environments are today available to
support developers in the construction of interactive
visual applications. However, with most of those tools,
the specification of the interactive runtime behaviour
of the system is still a cumbersome and tedious task.
Myers was one of the first researchers who felt that
software developers should be better supported in the
specification of the system dynamic behavior. In [3] he
proposed a model for handling input devices in
interactive applications, by means of objects (named
interactors) which encapsulate the details of the
related events. However, little work has been done
since then in that direction. Recently, more
sophisticated model-view-control architectures have
been employed with UIDE environments, requiring the
specification of a dialogue control module for each UI
component included in the interface design. MOBI-D
(Model-Based Interface Layout Editor) is one of the

first systems conceived to provide designers with
greater flexibility than traditional toolkits, by allowing
developers to define interface models as organized,
reusable, and integrated computational units [4].
However, no underlying formal specification is
employed to control the whole development process.
The TAGIVE system we have described comes from
the integration of two kinds of User Interface
Management Sytems (UIMS), those based on object
languages and those based on grammars. As described
in [3], object language based UIMS use a natural
approach to the interface considering its elements as
pairs of objects that interact, whereas grammar based
UIMS allow to specify the interface through a set of
rules in a grammar of a formal language. Thanks to the
combination of the two approaches, TAGIVE turns out
to be flexible, and the components of the realized
applications are easy to reuse. Moreover, high
abstraction level of specification is automatically
achieved for the generated visual language. Indeed, the
developer is allowed to implement the interactive
visual application visually and then, in automatic
manner, the corresponding grammar is produced, by
which TAGIVE controls completeness of the provided
design.

References:
[1] R. Cassino, G. Tortora, M. Tucci, G. Vitiello, “A

Tool for the Aided Generation of Interactive
Visual Environments”, 2003 International
Conference on Distributed Multimedia Systems
(DMS'2003) - Florida International University.

[2] R. Cassino, G. Tortora, M. Tucci, G. Vitiello,
“SR-Task Grammars: A Formal Specification of
Human Computer Interaction for Interactive
Visual Languages”, 2003 Symposium on Visual
Languages and Formal Methods (VLFM '03).

[3] B. A. Myers, “User interface software tools”,
ACM Transactions on Computer-Human
Interaction, 2, 1, March 1995, pp. 64-103.G.

[4] R. Puerta, E. Cheng, T. Ou, and J. Min,
"MOBILE: User-Centered Interface Building,"
Procs. CHI99: ACM Conference on Human
Factors in Computing Systems. Pittsburgh, 1999,
pp. 426-433, ACM Press.

[5] B. Shneiderman, C. Plaisant, Designing the User
Interface: Strategies for Effective Human-
Computer Interaction, 4/E, Addison-Wesley, 2005.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp426-431)

