
Permeation of RUP and XP on Small and Middle-Size Projects

KREŠIMIR FERTALJ, NIKICA HLUPIĆ, DAMIR KALPIĆ
Department of applied computing

University of Zagreb Faculty of Electrical Engineering and Computing
Unska 3, Zagreb 10000, CROATIA

Abstract: Modern software development business, as a very dynamic and often risky process, imposes new
approaches to planning and organisation of the work. At present, a typical team can apply one of the agile
methodologies, among which RUP and XP are the most common. They are both well-established and proven
in practice, but nowadays it is clear that they cannot respond to all the new challenges separately. The gap
between them leaves uncovered exactly those issues that mostly affect small and middle-size projects, which
are the majority of all projects in modern business. This paper proposes an integral process, a combination of
RUP and XP, which should be more convenient for small and middle-size projects than RUP or XP alone.
Generally, it anticipates less documentation than RUP and suggests more planning than XP, trying to adopt
the best form of both and adjust them to the modern business. Properly applied, the proposed process should
be more acceptable and more efficient than other similar methods.

Keywords: Software development, Methodology, Process

1 Introduction

The development of Extreme Programming (XP) in
nineties [1, 2] initiated lively discussion in software
development community between those promoting
XP and those advocating its “older big brother”
Rational Unified Process (RUP). A number of years
they were almost confronted methodologies for
software development, and there were numerous
studies [1-3], which tried to prove general superiority
of one over another. However, recently (in the last
few years), we have become more and more aware of
their complementarity [8-10], and of need for
integration and permeation of their concepts. This is
a mere consequence of the fact that most of the
present software projects fit into the class of middle-
sized projects, meaning that XP is too “little and
firm”, and RUP too “big and universal” [1] for literal
and strict implementation. Releasing and adjusting
some of the directives, and combining ideas of both
of these philosophies, is a logical solution for filling
the gap between them and a natural evolution of
software development methodologies in the present
business world.

2 Short overview of the RUP and XP

2.1 Overview of the RUP

Rational Unified Process, originally Unified
Development Process [11] is a software development
framework intended as the process complement to
Unified Modelling Language (UML) [11]. As a
universal software development framework, RUP

can accommodate wide variety of processes.
Because of wide scope and generality, it represents
highly systematic and quite disciplined approach to
the software development. Although it provides a
number of predefined “templates” sometimes called
out-of-the-box roadmaps [9], which model different
types of processes suited for different types of
software development projects, it does not require
any specific activity or production of any specific
artefact, nor does it require Rational tools for
effective application. It simply provides guidelines to
help the user to “tailor” the framework and decide
what is needed and applicable to a specific task. This
enables the user to choose the subset of artefacts that
will be produced and even to create its own artefacts,
if there are no appropriate ones in the predefined set.
RUP emphasises the adoption of certain rules, the
so-called “best practices” [9, 7] of modern software
development. These practices are already proven by
experience in many projects and in various teams,
and as such believed to be desirable and effective
way to reduce the risk inherent to the software
development projects. The best practices are [9]:
Iterative development, Management of requirements,
Application of component-based architectures,
Visual modelling, Continuous quality verification,
Control and tracking of changes.
The iterative development is one of the most
important practices in RUP. It provides constant
feedback, serving as a kind of project self-control
and as the main mechanism for reduction of inherent
risks.
The RUP lifecycle comprises four basic phases, as
follows:

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

I. Inception
During Inception, all parties in the project must
agree about the main aims (scope) of the project, the
predictable time schedule and the basic architecture
of the system. The main products of this phase
should be a Vision document, initial Use-case model
and Preliminary Project Plan. The Vision document
is a key artefact produced in this phase. It is a high-
level description of the system, which describes what
the system is, to whom it is intended, what features it
must provide to the customer and what constraints
exist.
II. Elaboration
The goal of the Elaboration phase is to clarify the
design of the system architecture into more detail in
order to make its implementation in Construction
phase easier and more straightforward. The key for
success is identification of the most important
requirements, which have the largest overall impact
on the system, and assessment of risks. With
identified requirements and risks, the architecture
can evolve from the basic, outlined in Inspection
phase, to the more detailed, which can provide a
stable basis for Construction phase. Elaboration
phase usually has two iterations. The aforementioned
activities should be accomplished in the first
iteration, and in the second one we plan the activities
for the following phases. The main new documents
that must be produced in Elaboration phase are
Software Requirements Specification, Software
Architecture Document and a plan of further
activities in the forthcoming phases.
III. Construction
Although in the beginning of the Construction phase
there is still a lot of work on the design of the
system, the Construction phase is a manufacturing
process, where the developers have to create
executable system. The system is improved through
iterations and should provide more and more
features. It can also undergo significant
modifications in response to possible changes of
specifications or use-cases. In the late iterations, the
focus of development effort gradually passes from
the overall functionality to development and testing
of particular system components. In addition, late
iterations are the right time for the team to create an
initial plan for performing the acceptance tests,
produce training materials and sketch the
Deployment Plan.
IV. Transition
Transition phase focuses on the availability of the
software for its end users. This is the time for the
first release and for a test of the fully functional
system, usually called beta-test. The system has to be
tested by the customer in regard to all aspects of the
intended usage. User feedback should help the fine-
tuning the product, but not rarely, users tend to
significantly revise and change their requirements

after the first usage of the whole system, so in the
Transition phase there must be a special concern
about Change Management.

2.2 Overview of Extreme Programming

Extreme programming is one of the methodologies
that have attracted the most attention. XP was
developed by Kent Beck in 1996 for the C3 Chrysler
payroll project [2]. Originally, XP was founded on
four core values, which were based on fifteen basic
principles and realised applying twelve practices.
However, new deliberations and recent experience
led to significant revision of XP [4, 5], which is
nowadays founded on five core values, based on
fourteen principles, thirteen primary practices and
eleven corollary practices. Here we provide just a
brief overview.
The five values are: Communication, Simplicity,
Feedback, Courage and Respect.
I. Communication
For XP, continual communication between the
customer and development team, as well as inside
the team itself, is the key for success. According to
XP, such communication is realised having the on-
site customer and frequent small releases of the
system. The on-site customer helps the developers
through the user stories and small releases provide
prompt feedback about the current system.
II. Simplicity
XP insists on simplicity in every stage of the product
development. Both the overall architecture and
particular software components should be as simple
as possible, fulfilling only the specified requirements
without redundancy in functionality due to
anticipated future needs. The main guarantee of
simplicity should be continual refactoring of the
code [6]. Moreover, XP suggests production of only
the necessary documents and non-code artefacts. The
code is considered the best and almost sufficient
documentation by itself.
III. Feedback
XP emphasises continual testing and many short
releases in order to provide reliable feedback and
risk reduction mechanism. Moreover, testing is in
XP the foundation of development and every
programmer is supposed to write tests as they write
the code or even before writing the code. This
enables highly stable platform for every advance in
the project and should reduce the inherent risk.
IV. Courage
Courage means ability to make and realise all needed
decisions, which can help or improve project
development. What is necessary must be done, no
matter how hard or unpopular it is. Such kind of
courage implies honesty of all team members, who
must be honest to themselves and aware of their

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

capabilities, as well as brave enough to be honest
about that with the rest of the team.
V. Respect
If a project team adopted the previous four values,
then this fifth one is merely the natural behaviour of
such team. If the team members do not care about
each other, or about the customer, and do not respect
other members or their work, no methodology can
help the project. Mutual respect among all interested
parties in the project is necessary precondition for
success.
These five values establish the basic rules, but they
say nothing about how to accomplish all the tasks.
Concrete directions are practices, but to be able to
carry them out, the team must adopt and obey some
principles in everyday work. According to Kent
Beck, there are fourteen XP principles [4].
Kent Beck recognises primary and corollary XP
practices [4], although some authors do some further
classifications [5]. For the sake of brevity, we shall
provide just the basic terms for all twenty four
practices, with occasional notes.
Primary practices: Stories (User Stories), Weekly
Cycle, Quarterly Cycle and Slack, Sit Together,
Whole Team, Informative Workspace, Energised
Work (formerly Sustainable Pace), Pair
programming, Incremental Design (comprises two
former – Refactoring and Simple Design), Test-First
Programming (Continuous Testing), Ten-Minute
Build, and Continuous Integration. The first four
primary practices have evolved from a single
Planning Game practice in the first edition [2], and
together present one of the most distinctive
characteristics of XP, compared to other
methodologies. They are often called the “embrace
change” property of XP.
Corollary practices: Real Customer Involvement
(formerly On-Site Customer), Incremental
Deployment. Negotiated Scope Contract, Pay-Per-
Use, Team Continuity, Shrinking Teams, Root-
Cause Analysis, Code and Tests, Shared Code
(formerly Collective Code Ownership), Single Code
Base, and Daily Deployment.

3 Permeation of RUP and XP

At first glance, it seems that RUP and XP are
irreconcilably opposed methodologies. On the other
hand, the reality is simple and undoubted; the
business environment changes in time, and it is more
and more clear that neither the RUP, nor XP alone
can respond appropriately to the new software
business requirements. The majority of software
world is too dynamic and unpredictable for “huge
and time-consuming” RUP, and software projects are
too expensive and important to be left to “ad-hoc”
planning in XP. It is obvious that the future demands

integration and permeation of these two concepts,
and here is how we see this process.
Extreme programming focuses on the code. Typical
projects last a few months (up to a year), and typical
teams have just a few people (up to, let us say, ten)
who are always available to each other and
intensively communicate. There is almost no
documentation, because everything changes daily
and production of documentation just slows down
the development. Finally, there is the on-site
customer to clarify all ambiguities, so the developers
always have somebody to tell them what the program
should do and what is the next highest priority. The
on-site customer, pair programming and short (daily)
releases are the main risk reduction mechanisms.
RUP is the opposite outmost. It is a configurable
process framework, which can be adjusted and
tailored according to a specific project. There are no
limits to the project size, price or the team size and
deployment, and the main risk reduction mechanisms
are iterations in each phase and detailed
documentation.
These two extremes can be best combined in areas
where one of these methodologies is not appropriate
and the other one is. For example, XP Pair-
Programming practice is not always desirable in
teams of only a few people, because it reduces
productivity per person. Similarly, Sit Together is
neither always possible, nor is nowadays necessary,
since modern communications allow effective work
and cooperation from distant locations. The same
holds for the on-site customer, who does not really
need to be “on-site” in order to be available and
useful to the developers. On the other hand, RUP’s
configurability is mostly too general for small or
medium-size projects. Excessive generality ends
being nothing [1] and of no use, so it has to be
limited. In addition, the required documentation is
too extensive to be acceptable for small teams, so it
has to be reduced as well.
Inability of RUP and XP to separately fulfil
expectations of modern small and medium-size
projects has been noticed for some time by a number
of experts, and there are analyses and endeavours to
combine them. However, we still consider this an
open question, because all attempts of integration
have ended more or less as being an absorption of
XP into the RUP [9, 10,12]. The main representative
of such solutions is dX, which can be considered “a
minimal RUP” [8]. dX is simplified “user-friendly”
RUP, which does not insist on modelling of the
system using UML diagrams, but declares only use-
cases and index-cards as obligatory documentation.
It also adopts several, mainly coding-related, XP
practices (e.g. Shared Code, Code and Tests,
Incremental Design and Pair programming etc.).
Nevertheless, all this cannot change the fact that it is
still predominantly RUP.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

Second thing that may legitimise further
deliberations and search for an alternative is
insufficient or inappropriate treatment of the human
factor in both RUP and XP. On one side, RUP is
high-level design-oriented methodology in which
people are just resources as any other, easily
replaceable and individually unimportant parts of a
large organisation. RUP demands detailed planning
so that any low-skilled person can do the job
properly, regardless of possibly poor understanding
of the end purpose or functionality of the entire
system. However, detailed planning demands plenty
of time (slow & expensive!) and predictive future,
which presupposes very precise definition of the
requirements and no change of them, especially not
in the late stages of the development. This is directly
opposite to the software development reality in
which customers ordinarily change their
requirements after the first release of the complete
system. Moreover, this is in conflict with the human
nature and intelligence, which presses us to learn and
understand the purpose of our work, and to strive to
something better than we already have. This means
that capable people might not be satisfied by position
RUP assigned to them, what can cause loss of
potentially precious individuals and long-term
damage. In contrast, XP relies too heavily on people
and their individual skills and knowledge. Too often,
it counts on extraordinary developers who can and
wish more, faster and better than the majority of
people can, or are ready to. This can be true and we
might have such a capable team, but complete
relying on humans is highly risky because inability
of only a single person to do the job as expected can
endanger the whole project. Moreover, highly skilled
people are usually expensive and they like challenge,
which might not appear on small projects, thus might
cause their dissatisfaction as well.

The solution this paper suggests is an integral
process, which would evenly combine RUP and XP
concepts, based on previous conclusions. This
process would retain evolutionary design, RUP alike
four phases and iterative nature, but it would also
take much more from XP than dX does. Although it
requires less documentation than RUP, it suggests
more planning than XP, especially at the beginning
when it encourages clear definitions and rough
design of the system, possibly using UML or some
other tools. In the later stages of the development it
implements majority of XP’s practices in due course.
We shall clarify this further explaining each phase
one by one. The tasks anticipated in each phase are
specified in tables. Tables also separately provide the
needed activities, foreseen by RUP and XP, for
accomplishment of particular task, and the activities
printed in bold font are supposed to be accepted in
the integral process. The permeation of RUP and XP
is obvious and comprehensive.

I. Preliminary study
The Preliminary study (called Inception in RUP)
phase (Table 1) is the beginning of the project and as
such demands seriousness and comprehensiveness.
Excessive planning and design like in RUP is not
desirable, as well as no planning at all as in XP, but
the most important requirements and aims should be
defined, clarified and written somewhere. Many
projects fail just because of bad foundation made at
the beginning, thus every effort made in this phase
can be expected to return multiply in the latter
phases. The process begins by creation of the Vision
document, which comprises: business motivation,
required system features, preconditions and
constraints, risks, main use cases, initial architecture
design and project schedule.

Table 1: Preliminary study phase.

Tasks RUP eXtreme Programming

Analysis of the requirements and
business modeling

Vision document

Use-Case analysis

User Stories
Communication Feedback

On-site customer
Analysis & Design Preliminary architecture design System Metaphor

Implementation Creation of use-cases prototypes

Testing Creation of test plans
Configuration & Change Management Change Control Strategy

Project Management Project Schedule Story Estimates

After the completion of Vision document, which is
a general project description, the next step is a more
precise definition of main use-cases. Initial versions
of use-cases should be created by the customer,
serving as the basis for more detailed analysis and
discussion among the developers and customer
representative. This should yield new use-case

documents, containing clarified and completed
descriptions (possibly supported by UML
diagrams) and text documents created using RUP
forms as templates. Based on these descriptions, we
create main use-case prototypes, which will provide
us with a valuable indication of possible shortages
of the initial system architecture and enable us

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

more precise estimation of the time needed for each
iteration. Thus, the prototypes serve as the final
check of the requirements and the first feasibility
test. For small and middle-size projects, we do not
recommend creation of test plans already in the
Inception phase. Rather we suggest emphasise on
Configuration & Change Management, that is,
definition of the form and contents of Change
Request documents, which will record every
demand for change of system requirements.
At the end of Inception phase we should have clear
descriptions of the main use-cases, initial system
architecture (Component & Deployment diagrams)
and the approximate project schedule. Vision
document and a few UML diagrams supported by
several other documents should be sufficient
documentation for a long time.

II. System Analysis and Design
System Analysis and Design (SAD) is a counterpart
of Elaboration phase in RUP and is one that
combines RUP and XP in many aspects (Table 2).
The main task in this phase is analysis and design
of the system components, and their
implementation. The analysis and design rely
primarily on the RUP, and realisation on XP. Thus,
they combine evenly again. In collaboration with
customer, development team continues defining
less important or unfinished use-cases, while those
completely defined and most important get
priorities and time estimates. Predictable risks are
considered as well, and use-cases with high risk get
the higher priority. We also set the time estimates
for each iteration, which have to conform to the
sum of periods foreseen for development of each
use-case scheduled for a particular iteration.
The developers intensively work on analysis and
design of the system. Here RUP finds its role,
because XP does not define any specific activity for

this purpose. We suggest that developers create
models of system components and describe them by
UML Class, Sequence and Collaboration diagrams.
Class diagrams explain static structure of the
system, defining the main classes, their roles and
relations and, in the later iterations of analysis and
design, their properties, methods and events.
Sequence and Collaboration diagrams describe
system dynamics, and are sometimes called
interaction diagrams. If the need occurs for special
description of a part of business process, a critical
algorithm or data flow, we add an UML Activity
diagram.
XP practices are preferable during code
development. It especially holds for creating unit-
tests before the actual development of a certain
component. Creating unit-test before the
components ensures that everything and in any time
will do what it is supposed to do. In addition, unit-
tests can be a very effective way for verification of
the design of program interfaces implemented in
the most important classes in the system. If it turns
difficult to write coherent tests based on the
accepted component interface, it is usually the first
sign that something is wrong with the design. XP
also anticipates pair-programming, but we do not
consider it as obligatory. It seems reasonable to
have more than one programmer on a component,
but while one writes the code, the other one can
write the tests to speed up the whole process. They
should change their roles periodically to reduce
probability of mistakes and to ensure even
progression of both the code and tests. There can
also be more than two programmers simultaneously
working on more than one component. What is
important is to retain simplicity of the system, by
continual synchronisation of the code and system
architecture, courage to change any part of the code
and daily integration of the finished code.

Table 2: System Analysis and Design phase.

Tasks RUP eXtreme Programming

Analysis of the requirements and
business modeling

Use-Case analysis

User Stories
Communication Feedback

On-site customer

Analysis & Design Class, Sequence, Collaboration
and Activity modeling

Simple Design, System design
sketches (CRC sketches)

Implementation Architecture prototype

Frequent Small Releases
Continual Integration
Collective Ownership

Refactoring
Pair programming

Testing Planning, design and
implementation of tests Test-First Programming

Configuration & Change Management Change Request documents

Project Management Defined Project Plan
Status Assessment document Iteration Plan

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

III. System Construction
The progress from the System Analysis and Design
to System Construction phase is not an abrupt one,
rather a gradual shift of emphasis and intensity of
work from the design to implementation. Therefore,
all the activities specified in Table 2 continue, as
shown in Table 3.
The main difference between SAD and the
Construction phase is an improved stability of the
system architecture and more control over requests
for changes. The change of key concepts and design
in this phase of the project would require radical
decisions and could seriously threaten already well-
progressed work. Thus, Request Change documents
created in SAD phase now become very useful and
are the main protection of the system from

uncontrolled or unjustified modifications of the key
definitions. They are also helpful for estimation of
the risk implied by the acceptance of a certain
change and useful for assessment of the status of
the project as well. Generally, the required
documentation in System Construction phase is
mostly the same as in SAD phase, with the
difference that up to now everything has been
sufficiently clarified and in full motion, so there is
no more need for detailed planning of the future
iterations as before. By the end of System
Construction phase, we can start to consider the
transfer (installation, testing, and education) of the
system to the customer, as suggested by RUP,
though it is the role of the Transition phase.

Table 3: System Construction phase.

Tasks RUP eXtreme Programming

Analysis of the requirements and
business modeling

Use-Case analysis

User Stories
Communication Feedback

On-site customer

Analysis & Design Class, Sequence, Collaboration
and Activity modeling

Simple Design, System design
sketches (CRC sketches)

Implementation

Frequent Small Releases
Continual Integration
Collective Ownership

Refactoring
Pair programming

Testing Planning, design and
implementation of tests Unit Testing

Configuration & Change Management Change Request documents
Project Management Status Assessment document Iteration Plan

Table 4: Transition phase.

Tasks RUP eXtreme Programming
Analysis of the requirements and

business modeling

Use-Case analysis
User Stories

Communication Feedback
On-site customer

Analysis & Design Class, Sequence, Collaboration
and Activity modeling

Simple Design, System design
sketches (CRC sketches)

Implementation

Frequent Small Releases
Continual Integration
Collective Ownership

Refactoring
Pair programming

Deployment
Deployment plan

User documentation
Support plan

Configuration & Change Management Change Request documents
Project Management Status Assessment document Iteration Plan

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

IV. Transition
Although formally the last, the Transition phase
starts by release of the first executable version of
the software, regardless of its much reduced
functionality. The day of the first release is
considered the system “birthday”, so that the
Transition phase starts very early in the project
lifecycle, somewhere in the Preliminary Study
phase, and continues in parallel (in “background”)
with SAD and System Construction phases. During
Transition, customer tests the functionality of the
whole system, and some minor changes and
interface “polishing” are still acceptable. This is
again an iterative process recognised by both the
RUP and XP, but RUP provides Product
Acceptance Plan document, which formalises test
methods, test time schedule and criteria for
successful completion of the tests, so here we
recommend RUP artefacts. Simultaneously with
Acceptance tests, the care should be taken about
system deployment. Again, XP does not define
appropriate formal procedures, so we suggest to use
the RUP Deployment Plan document. Deployment
plan document determines responsibilities in the
team, time schedule and infrastructure prerequisites
for successful system deployment.
Finally, supporting materials (user manuals,
educational courses, etc.) have to be prepared, as
well as the long-term maintenance plan.

4 Conclusion

RUP is a process framework, which can be applied
to wide variety of projects. It is highly formal and
structured, providing many out-of-the-box
roadmaps for a number of project types. On the
other hand, RUP does not say anything about how
to actually do everything that has to be done, thus
we can consider it as a completely process-oriented
methodology. In contrast, XP is devoted to
everyday life and low-level management of the
development team. XP does not insist on
documentation and does not provide any project
templates. It is completely people oriented
methodology, relying on human intelligence,
communication and positive work-atmosphere in
the team as the main guaranties of success.
Obviously, there is a gap between these two
approaches, exactly where middle-size projects fit,
and in this paper we presented one possible
combination of RUP and XP, which should be more
convenient for small and middle-size projects than
RUP or XP alone. We have retained the four RUP
alike phases in project lifecycle, but we have
significantly reduced the documentation, selecting
just those artefacts, from all of the foreseen by
RUP, that are necessary to support a little larger

and less compact team than expected in XP. These
documents are, first of all, use-case definitions,
analysis and design documentation, system
architecture definition, change request documents
and a few more, specified in tables 1 though 4.
Everything else, besides documentation and project
structure, comes from XP. We adopt reduced XP’s
people-orientation and most of the XP practices,
especially communication, frequent small releases,
code refactoring and testing, etc.; anything not
precisely defined by RUP. XP practice of writing
tests before or at least in parallel with code proved
to be an excellent risk reduction mechanism and it
is widely accepted nowadays, even in RUP
processes. As it is particularly suited for small and
middle-size projects, we strongly recommend it
there.
The combination of RUP and XP illustrated in
tables 1 through 4 is certainly possible on small and
middle-size projects, and we believe that it exploits
the human experience in software development
more efficiently than other similar methodologies.

References:
[1] M. Fowler: The New Methodology, 2005,
 www.martinfowler.com/articles/newMethodol
 ogy.html
[2] K. Beck: Extreme Programming Explained,
 Addison-Wesley 2000
[3] K. Beck, M. Fowler: Planning Extreme
 Programming, Addison-Wesley 2001
[4] K. Beck, C. Andres: Extreme Programming
 Explained – Embrace Change,
 Addison-Wesley 2005
[5] M. Marchesi: The New XP,

 www.agilexp.org/downloads/TheNewXP.pdf
[6] M. Fowler et al.: “Refactoring: Improving the

 Design of Existing Code”, Addison-Wesley,
1999

[7] P. Kruchten: The Rational Unified Process,
 Addison-Wesley 2004
[8] G. Booch, R.C. Martin, J. Newkirk: Object

 Oriented Analysis and Design with
Applications, Addison-Wesley Longman Inc.,
1998

[9] G. Pollice: “Using RUP for small projects:
 Expanding upon Extreme Programming”,
 www-106.ibm.com/developerworks/rational/
 library/409.html
[10] G. Pollice, R.C. Martin: “The Rational Unified
 Process and Extreme Programming:
 An Introduction to the RUP Plug-In for XP”
[11] I. Jacobson, J. Rumbaugh, G. Booch: The
 Unified Software Development Process,
 Addison-Wesley 1999
[12] M. Fowler: Is Design Dead?, 2004,
www.martinfowler.com/articles/designDead.html

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp98-104)

