
Multi-Agent Systems in Distributed Communication Environments

CAMELIA CHIRA, D. DUMITRESCU

Department of Computer Science

“Babes-Bolyai” University

1B M. Kogalniceanu Street, Cluj-Napoca, 400084

ROMANIA

Abstract: Agents are autonomous and flexible systems situated in an environment where agents act

accordingly for achieving their objectives. Composed of several interacting agents, multi-agent systems offer

promising engineering solutions for developing robust and scalable systems. A review of agents, multi-agent

systems and ontologies is presented. A multi-agent architecture addressing virtual collaboration in a

distributed environment is proposed and its potential for communication support, resource interoperation and

knowledge integration is investigated. The proposed architecture has the potential of optimizing the flow of

information in communication networks.

Key-Words: agents, multi-agent systems, ontologies, cooperation, distributed environments

1 Introduction
Agents and Multi-Agent Systems (MAS) represent

an important and fast growing area of Artificial

Intelligence (AI) with the potential to play a crucial

role in a large number of application domains

including ambient intelligence, computing,

electronic business, semantic web, bioinformatics

and computational biology [1, 8, 10, 14]. MAS are

ideal for solving complex real world problems with

multiple problem solving methods, multiple

perspectives and/or multiple problem solving

entities [8].

 The potential benefits of software agents are

exemplified by presenting a multi-agent architecture

for distributed collaboration. Proposed architecture

employs MAS and ontologies to support distributed

users who have to cooperate in a computer-based

environment in order to solve problems.

2 Agents
Over the last years, autonomous agents have been

the focus of researchers and developers from

disciplines such as AI, object-oriented

programming, concurrent object-based systems and

human-computer interface design [1, 8].

2.1 Agent definition
A literature review in the area of agents and agent-

based systems offers many and diverse definitions

for the notion of agency [1].

 Over a decade ago, Shoham [12] defined an

agent as “an entity whose state is viewed as

consisting of mental components such as beliefs,

capabilities, choices, and commitments”.

 Russell and Norvig [11] believe that an agent is

“anything that can be viewed as perceiving its

environment through sensors and acting upon that

environment through effectors”.

 Nwana [10] indicates, “when we really have to,

we define an agent as referring to a component of

software and/or hardware which is capable of acting

exactingly in order to accomplish tasks on behalf of

its user”.

 Franklin and Graesser [6] define the term

“autonomous agent” as “a system situated within

and part of an environment that senses that

environment and acts on it, over time, in pursuit of

its own agenda and so as to effect what it senses in

the future”.

 Jennings, Wooldridge and Sycara [8, 14] define

an agent as “a computer system that is situated in

some environment, and that is capable of flexible

autonomous action in this environment in order to

meet its design objectives”.

 More recently, the Foundation for Intelligent

Physical Agents (FIPA) [7] indicates that “an agent

is an encapsulated software entity with its own state,

behaviour, thread of control, and an ability to

interact and communicate with other entities –

including people, other agents, and legacy systems”.

 Although there is no universally accepted agent

definition, researchers and scientists generally agree

that an agent acts on behalf of its user, is situated in

an environment and is able to perceive that

environment, has a set of objectives and takes

actions so as to accomplish these objectives and is

autonomous [1].

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

2.2 Agent properties
The main properties of an agent can be summarised

as follows [1, 6, 10, 14]:

• Autonomy: The ability to operate on its own

without the intervention of humans or other

systems.

• Reactivity: The ability to perceive its

environment and to respond to changes that

occur in it.

• Pro-activeness: The ability to take the

initiative in order to pursue its individual

goals (goal-directed behaviour).

• Cooperation (or social ability): The

capability of interacting with other agents

and possibly humans via an agent-

communication language. Involves the ability

of an agent to dynamically negotiate and

coordinate.

• Learning: The ability to learn while acting

and reacting in its environment. Learning can

increase performance of an agent over time.

• Mobility: The ability to move around a

network in a self-directed way.

Furthermore, some researchers identify more

properties associated with the notion including

temporal continuity, personality, veracity,

benevolence and rationality [1].

2.3 Agent typologies
The most straightforward classification of an agent

would be along one of their properties such as [10]:

• Mobility: static or mobile agents.

• Reactivity: deliberative or reactive agents.

Nwana [10] uses autonomy, cooperation and

learning to classify agents in four categories as

follows: collaborative agents, collaborative

learning agents, Interface agents and smart agents.

 Franklin and Graesser [6] classify autonomous

agents in three classes i.e. biological agents, robotic

agents and computational agents (the kingdom

level). Furthermore, computational agents can be

divided in software agents and artificial life agents

(the phylum level) and software agents can be

classified in task-specific agents, entertainment

agents and viruses (the class level). A further

taxonomy can be performed using schemes such as

classification via the agent’s control structures (e.g.

regulation, planning and adaptive), via

environments (e.g. database, file system, network,

internet), via languages (in which the agent is

written) and via applications.

 From an architectural point of view, Wooldridge

[14] identifies logic-based agents, reactive agents,

BDI (Belief-Desire-Intention) agents and layered

architectures.

2.4 Agent architectures
Agent architectures address the issues of designing

and creating computer-based systems that satisfy

agent properties. Wooldridge and Jennings [14]

identify three classes of agent architectures i.e.

deliberative, reactive and hybrid.

 Deliberative architectures adopt the traditional

AI approach to designing intelligent systems by

viewing them as a type of knowledge-based system.

The agent-based system that has to be designed

receives a symbolic representation of its

environment and its desired behaviour, which can

be syntactically manipulated. The disadvantages

associated with deliberative architectures refer to

the transduction problem (it is time consuming to

translate information into its symbolic

representation) and the representation/reasoning

problem [1, 14]. Much of the research and

development work on deliberative agents has

focused on the agent-oriented programming

paradigm. The state of an agent is characterised in

terms of its mental attitudes of belief, desire and

intention [1]. Agent-oriented programming uses

these intentional notions to directly program agents.

Shoham developed an experimental language called

AGENT0 [12] in order to demonstrate the agent-

oriented programming paradigm.

 Inspired by the philosophical tradition of

understanding practical reasoning, BDI

architectures have become very popular over the

last years [1, 14]. The BDI architecture represents

an agent in terms of its beliefs, desires (or goals)

and intentions. The basic components of a BDI

agent are data structures (that represent beliefs,

desires and intentions) and functions for

representing and reasoning about them.

 Reactive architectures are an alternative to the

symbolic AI paradigm. They involve developing

and combining individual behaviours of reactive

agents situated in some environment [14]. Reactive

agents have a very simple representation of the

world but provide tight coupling of perception and

action. The behaviour-based paradigm informs the

reactive approach to building agents. Each

individual behaviour continually maps perceptual

input to action output. In the reactive approach,

intelligent behaviour emerges from the interaction

of various simpler behaviours as well as from the

interaction between an agent and its environment.

The main disadvantage of this architecture relates to

the fact that agents do not employ models of their

environment. Decision making is realised in the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

agent’s local environment without necessarily

taking into account non-local information [1, 14].

 Hybrid architectures combine the deliberative

and reactive approaches [1]. An agent consists of

several subsystems that manifest characteristics of

both deliberative and reactive approaches as

follows:

• Deliberative component: subsystems develop

plans and make decisions using symbolic

reasoning.

• Reactive component: subsystems are able to

react quickly to events without complex

reasoning.

A popular approach to the design of hybrid agents

is the use of layered architectures [1]. The various

subsystems of the architecture are arranged into a

hierarchy of interacting layers each of which is

reasoning about the environment at different levels

of abstraction.

3 Multi-agent systems
A multi-agent approach to developing complex

software applications involves the employment of

several agents capable of interacting with each other

to achieve objectives [3]. The benefits of such an

approach include the ability to solve large and

complex problems as opposed to a single centralised

agent that might fail the same task, interconnection

and interoperation of multiple existing legacy

systems and the ability to handle domains in which

the information resources and expertise are

distributed [1, 8].

3.1 MAS definition
A MAS is a “loosely coupled network of problem

solvers that work together to solve problems that

are beyond the individual capabilities or knowledge

of each problem solver” [8]. The problem solvers

from this definition are autonomous and possibly

heterogeneous agents able to interact with each

other in order to reach an overall goal. Moreover,

each agent within the MAS has a limited set of

capabilities or incomplete information to solve the

problem. The MAS approach implies that there is

no global system control, data is decentralized and

computation is asynchronous [8].

 Clearly, the interoperation among autonomous

agents of a MAS is essential for the successful

location of a solution to a given problem. Agent-

oriented interactions span from simple information

interchanges to planning of interdependent

activities for which cooperation, coordination and

negotiation are fundamental.

3.2 Coordination in MAS
Agents have to coordinate their activities in order to

determine the organizational structure in a group of

agents and to allocate tasks and resources [9].

Agents may have to communicate in order to

achieve the necessary coordination.

 Coordination is necessary in a MAS because

agents have different and limited capabilities and

expertise. Furthermore, interdependent activities

require coordination (the action of one agent might

depend on the completion of a task for which

another agent is responsible).

 The foremost techniques to address coordination

in MAS include organisational structuring, Contract

Net Protocol (CNP), multi-agent planning, social

laws and computational market-based mechanisms

[1].

3.3 Negotiation in MAS
Negotiation is essential within a MAS for conflict

resolution and can be regarded as a significant

aspect of the coordination process among

autonomous agents [1, 8]. The main characteristics

of negotiation include the existence of a conflict, the

need to resolve the conflict in a decentralised

manner by self-interested agents, bounded

rationality and incomplete information [8].

3.4 Communication in MAS
In order to achieve a beneficial agent interoperation,

communication in a MAS is a requirement because

agents need to exchange information and knowledge

or to request the performance of a task since they

only have a partial view over their environment [1,

8].

 Considering the complexity of the information

resources exchanged, agents should communicate

through an agent communication language (ACL)

[5, 10]. Standard ACLs designed to support

interactions among intelligent software agents

include the Knowledge Query and Manipulation

Language (KQML) proposed by the Knowledge

Sharing Effort consortium [5] and FIPA ACL

defined by the FIPA organization [7]. Both KQML

and FIPA ACLs are designed to be independent of

particular application vocabularies [1].

 Furthermore, a meaningful communication

process among agents requires, besides an ACL, a

common understanding of all the concepts

exchanged by agents. Ontologies represent one of

the most significant technologies to support this

requirement being capable of semantically managing

the knowledge from various domains.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

4 Ontologies for MAS
Ontologies enable content specific agreements to

facilitate knowledge sharing and reuse among

systems that submit to the same ontology/ontologies

by the means of ontological commitments. They

describe concepts and relations assumed to be

always true independent from a particular domain

by a community of humans and/or agents that

commit to that view of the world [4].

 The following definition is generally accepted

by researchers: “Ontologies are explicit formal

specification of a shared conceptualization” [13],

where explicit means that “the type of concepts

used, and the constraints on their use are explicitly

defined”, formal means that “the ontology should

be machine readable, which excludes natural

language”, shared “reflects the notion that an

ontology captures consensual knowledge, that is, it

is not private to some individual, but accepted by a

group” and conceptualization emphasizes the

“abstract model of some phenomenon in the world

by having identified the relevant concepts of that

phenomenon”.

 Most definitions and interpretations of

ontologies use consensus and formality as the key

characteristics. The general vision is that ontologies

should be machine-enabled and, if not directly

human-readable, they should at least contain plain

text notices or explanations of concepts and

relations for the human user [4].

5 A multi-agent ontological approach

to distributed support. Applications in

communication systems
A multi-agent and ontological architecture to

support distributed cooperation and optimise

information flows in communication networks is

proposed.

5.1 Problem statement
Emerging enterprise models involve multiple users

distributed in a virtual environment who have to

cooperate using the software tools available in order

to solve problems. Being highly heterogeneous,

these users (or teams of people) can be

geographically, temporally, functionally and

semantically distributed over the enterprise [3]. A

computer-based communication network is the work

environment where interoperation has to take place

[1].

 Computational support is needed for

communications and accessibility to knowledge,

past records and histories [3]. Any software

infrastructure intended to support distributed

collaboration should address the following issues

[1]:

• Efficient management of the information

circulated in a distributed environment by

providing content related support.

• Cooperation support through an effective use

of communication, co-location, coordination

and collaboration processes.

• Integration of the heterogeneous software

tools used in the distributed environment

enabling the flow of information.

The proposed architecture employs multi-agent

systems for interoperation among distributed

resources and ontologies for knowledge sharing,

reuse and integration.

5.2 Proposed multi-agent architecture
From a high-level view, the proposed architecture

consists of an Ontological Plane and a Multi-Agent

Plane (see Fig. 1).

Fig.1 A high-level view of the proposed

architecture

The Ontological Plane specifies the hierarchy of

ontologies that define concepts, relations and

inference rules. These ontologies compose the

machine-enabled framework in which the system’s

information resources are circulated and stored. It

also includes specific knowledge of the domain

instantiated according to the rules specified by the

Ontology Library. The scope of the Ontology

Library is to create a common shared understanding

of the application domain so that information and

Ontology Agents Application Agents

User Agents

Inter-

connection

Multi-Agent

Plane

Ontological

Plane
Instance

Bases

Ontology Library

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

knowledge can be shared among the members of

the distributed environment. These members can be

humans or software agents. The ontology aims to

establish a joint terminology between these

members [1].

 The Multi-Agent Plane specifies the types and

behaviours of the software agents required to enable

the system’s functionality (see [2]). It facilitates the

access, retrieval, exchange and presentation of

information to distributed teams through various

agent systems (e.g. user agents, application agents,

ontology agents and interconnection agents).

Therefore, the flow of information in the

environment can be potentially optimised.

 The User Agents form the interface between the

system and the user. They provide different services

to the user and respond to queries and events

initiated by the user (or on behalf of the user) with

the help of the ontological agents. Examples of

User Agents include a User Profile Manager agent

(which should act autonomously to manage the

profile of the user and should learn user preferences

over time) and a User Interface Controller agent

(which should provide a customizable graphical

user interface based on the user profile).

 The Application Agents are in charge of

retrieving information from the software

applications called by the user and forward it for

storage to the ontological agents. They should be

integrated in the software tools regularly used in the

specific distributed domain and act autonomously

pursuing their objective (i.e. information retrieval).

 The Ontology Agents provide ontology

management services in communication networks.

They are able to access, retrieve, add, modify and

delete information from the Ontology Library.

Besides the agents that can read, write and update

information, the ontology agent society should

contain agents that are able to supervise the

ontology management process ensuring the

consistency of the ontology and the delivery of the

requested ontology-related services.

 The agents from the interconnection society

supervise and support the interoperation process

among the other agents. The main objective of this

agent society is to ensure that agents are

meaningfully interconnected. This can be achieved

through a System Manager agent that supervises the

overall functionality of the multi-agent system and

a Directory Facilitator agent that helps agents to

find other agents that provide a requested service.

Based on the FIPA specifications, the System

Manager must be able to perform functions such as

register, deregister, modify, search and get-

description. Furthermore, the System Manager

agent has the capability to execute the actions such

as suspending an agent, terminating an agent,

creating an agent, resuming agent execution,

invoking an agent, executing an agent and

managing resources. Being FIPA compliant, the

Directory Facilitator provides a Yellow Pages

service to the agent community. Any agent can use

the Directory Facilitator to find other agents

providing required services for achieving internal

objectives. For example, when a User Interface

Controller agent needs to display information

regarding a specific concept in a graphical format,

the Directory Facilitator can be used to retrieve the

agent identifier of the specific Ontology agent(s)

that can read the requested information from the

Ontology Library.

 The agent interactions within the proposed

system are vital for a successful and constructive

support provided to distributed users. It is proposed

that the agents are FIPA [7] compliant and

communicate by exchanging ACL messages. The

FIPA agent management ontology is part of each

agent expertise to enable meaningful agent

interoperation [1].

 The proposed system exploits agent properties

such as autonomy, cooperation, learning and pro-

activeness in a semantic approach to support a

process that involves dispersed heterogeneous

resources and multidisciplinary people (see [1]).

6 Conclusions
Enjoying certain properties (e.g. autonomy, pro-

activeness, communication, learning, temporal

continuity, mobility) that distinguish them from

standard programs, agents have the potential to

manage the complexity inherent in distributed

software systems and therefore forming an

important new agent-oriented software engineering

paradigm [1, 8, 14].

 Several application areas (e.g. industrial,

commercial, medical, entertainment) are currently

focused on the employment of agents and MAS in

complex problem solving processes. Domains in

which data, control, expertise or resources are

inherently distributed can be addressed using agent

technology.

 The potential of the multi-agent approach is

demonstrated by presenting a MAS architecture for

the support of distributed collaboration over a

computer network. The proposed multi-agent

architecture aims to optimise the flow of information

in communication networks by enabling distributed

resource interoperation and knowledge exchange.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

Future research focuses on further development of

multi-agent ontological architectures for the support

of emerging communication systems.

Acknowledgements

This research is supported by the Grant “Natural

Computing. New Paradigms and Applications”

funded by the Ministry of Education and Research,

Romania.

References:

[1] C. Chira, The Development of a Multi-Agent

Design Information Management and Support

System. Galway-Mayo Institute of Technology:

Galway, 2005.

[2] C. Chira, O. Chira, A Multi-Agent System for

Design Information Management and Support,

International Conference on Computers,

Communications and Control (ICCCC 2006), Baile

Felix Spa Oradea, Romania, 2006.

[3] O. Chira, C. Chira, D. Tormey, A. Brennan, T.

Roche, An Agent-Based Approach to Knowledge

Management in Distributed Design, Special issue

on E-Manufacturing and web-based technology for

intelligent manufacturing and networked enterprise

interoperability, Journal of Intelligent

Manufacturing, Vol. 17, No. 6, 2006.

[4] V.O. Chira, Towards a Machine Enabled

Semantic Framework for Distributed Engineering

Design. in Department of Mechanical & Industrial

Engineering. Galway-Mayo Institute of

Technology: Galway, 2004.

[5] T. Finin, Y. Labrou, J. Mayfield, Kqml as an

Agent Communication Language, in Software

Agents, B.M. Jeffrey, Editor, 1997.

[6] S. Franklin, A. Graesser, Is It an Agent, or Just

a Program?: A Taxonomy for Autonomous Agents,

Proceedings of the Third International Workshop

on Agent Theories, Architectures, and Languages,

Springer-Verlag, 1996, Berlin, Germany, 1996.

[7] http://www.fipa.org, Foundation for Intelligent

Physical Agents.

[8] N.R. Jennings, K.P. Sycara, M. Wooldridge, A

Roadmap of Agent Research and Development,

Journal of Autonomous Agents and Multi-Agent

Systems, Vol. 1, No. 1, 1998, pp. 7-36.

[9] H. Nwana, L. Lee, N. Jennings, Coordination

in Software Agent Systems, BT Technology

Journal, Vol. 14, No. 4, 1996, pp. 79-88.

[10] H.S. Nwana, Software Agents: An Overview,

Knowledge Engineering Review, Vol. 11, No. 3,

1996, pp. 1-40.

[11] S. Russell, P. Norvig, Artificial Intelligence: A

Modern Approach, 2/E, ed; ed.; 2003.

[12] Y. Shoham, Agent-Oriented Programming, in

Readings in Agents,

[13] R. Studer, V.R. Benjamins, D. Fensel,

Knowledge Engineering: Principles and Methods,

Data and Knowledge Engineering, Vol. 25, No. 1-

2, 1998, pp. 161-197.

[14] M. Wooldridge, Intelligent Agents, ed; An

Introduction to Multiagent Systems; ed. G. Weiss;

1999.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp267-272)

