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Abstract: - An evolutionary metaheuristic called genetic chromodynamics and its applications to optimization, 
clustering and classification are presented in current paper. Genetic chromodynamics aims at maintaining 
population diversity and detecting multiple optima. All algorithms derived from genetic chromodynamics use 
a variable-sized population of solutions and a local interaction principle as selection for reproduction. Sub-
population formation is achieved through the interaction between individuals, without any modification of the 
objective function. Sub-populations evolve and eventually converge to several optima. Very close individuals 
are merged and thus population size may be decreased with each generation. At convergence, each final 
subpopulation contains a single individual which corresponds to one optimum (solution of the problem). The 
model can be successfully applied to various optimization issues in telecommunication. 
 
Key-Words: - Genetic Chromodynamics, multimodal optimization, evolutionary computation, function 
optimization, clustering, classification. 
 
1   Introduction 
Most of the real world problems we are trying to 
solve have more than one solution; meanwhile, the 
majority of evolutionary techniques [4] developed 
so far are dedicated to solve problems with a single 
solution only, therefore, the need for powerful 
techniques able to detect all solutions or only a 
selection of the best of them is very high. In 
addition, the hitch of the models intended to solve 
unimodal problems is that search may block into a 
suboptimal solution; when using a multimodal 
technique, chances to find the global optimum are a 
lot higher. 

Genetic Chromodynamics (GC) [3], [6] 
represents a metaheuristic for solving (multimodal) 
optimization/search problems. It embodies an 
implicit combination of a global evolutionary 
searcher with a local one and mixes the advantages 
of both. In order to detect the correct number of 
optima, it is necessary to have one solution per 
optimum. For this purpose a new operator called 
merging is introduced. It merges very similar 
individuals, keeping only the most promising ones 
in the population. Results obtained by using GC for 
the optimization of numerous tricky functions and 

through its application to clustering and 
classification confirm the viability of the model. 

A field that requests application of multimodal 
optimization engines is telecommunications. With 
the increased number of services and users, the 
discovery of all (sub) optimal potential solutions is a 
major advantage, as providers can subsequently 
select the one which is advantageous to implement. 
The optimal design of error correcting codes for a 
fast and reliable transmission of messages through 
noisy channels, the optimal routing of packets 
through a network or the optimal coverage of a 
maximal area with a minimum set of transmitters are 
just a few common optimization problems in 
telecommunications. On the other hand, the optimal 
filtering (classification) of unwanted e-mails or the 
identification of optimal clusters of nodes for the 
design of logical rings in advanced optical fiber 
systems are also of major importance. Through its 
behaviour and validated by its applications in 
function optimization, clustering and classification 
encourage the belief of the ability and suitability of 
GC for telecommunications issues. 

The paper is organized as follows: next section 
presents the core of the GC metaheuristic, while 

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp92-97)



section 3 includes some variants of GC meant to 
improve and generalize proposed model. Section 4 
puts together some applications of GC for several 
benchmark problems. Last section ends the 
discussion by formulating some conclusions. 
       
2   Standard GC model 
Unlike most evolutionary techniques, GC uses a 
variable sized population, as the number of 
individuals decreases with the advance in evolution. 
This is a very important point as, when diversity 
decreases, there is no need for many similar 
individuals in the population anymore; their 
recombination will not direct search towards 
unexplored areas from the search space. Moreover, 
the decrease in the number of individuals will 
significantly minimize the number of fitness 
evaluations, leading therefore to a smaller amount of 
computations. 

GC forces the formation and the maintenance of 
stable subpopulations from the early search stages of 
the process and each subpopulation is connected to 
local or global optima of the problem to be solved. 
This is achieved by introducing a set of restrictions 
such as the way selection is applied or the way 
recombination takes place. For selection, each 
individual represents a stepping-stone for the 
establishment of the new generation, i.e. each 
chromosome is taken into account for reproduction 
purposes. Additionally, a local interaction principle 
is considered in this respect, meaning that only 
chromosomes similar under a given threshold 
recombine. If a chromosome c has no similar 
individuals to it, i.e. there is not any other individual 
in the current population similar to c under the 
considered threshold, then c suffers mutation. After  
recombination or mutation takes place, the offspring 
fights for survival with the stepping-stone parent.     

At a first glance, one can easily notice that an 
uncommon selection procedure takes place within 
the GC model, as each individual from the current 
population participates in forming the population 
that will form the next generation. This is the reason 
why each individual is called a stepping stone at 
certain moments. 

A description of the algorithm is illustrated in 
Fig. 1. The algorithm begins with the initialization 
of the population; at this point, each individual is 
considered to have a different color. Therefore, the 
search process starts with a population whose all 
individuals have different colors. Afterwards, the 
color of each individual changes into the color of the 
fittest individual within its mating range. By 
applying merging, many individuals are removed 

from the current population; therefore from the early 
stages each sub-population will contain only 
individuals colored likewise. 

 
Fig. 1 General scheme of GC algorithm 

     
For each individual, the dissimilarity between it 

and all the other individuals in the population is 
computed; all individuals which are at a lower 
distance than the mating radius r form the mating 
region of the current individual. Any distance to 
characterize the dissimilarity between individuals 
can be chosen, depending on representation. 
If there is not any individual in the mating area of 
the current individual c (left branch of Fig. 1) 
mutation is applied to it and obtained offspring 
fights for survival with the parent. This situation 
happens when the individual remains alone in a 
search sub-space corresponding to an optimum and 
only some fine tuning as a result of mutation is 
henceforth performed to it. Mutation step size is 
chosen as for the offspring to remain in the mating 
area of the parent. 

If there are some individuals in the mating area 
of the current individual c (right branch in Fig. 1), 
one of them is selected (using any selection scheme) 
and crossover takes place one offspring resulting. 
The offspring fights for survival with the stepping 
stone parent, c. Fig. 2 illustrates the way mutation, 
crossover and merging happen. 
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Fig. 2 Mating (left) and merging (right) within GC. 
Chromosome c1 produces one offspring by mutation; 
chromosome c2 selects another chromosome from its 
mating region (dotted circle) and produces one offspring 
by crossover. Crossed lines indicate replaced 
chromosomes with worse fitness. During merging, c2 is 
deleted because there is another chromosome with better 
fitness in its merging region (solid circle). 

 
GC introduces a new operator that merges very 

similar individuals into a single one that is often 
chosen to be the best one of them with respect to the 
fitness evaluation (Algorithm 1).  

As a consequence of all these phenomena, 
subpopulations independently evolve and become 
better separated with each iteration and lead, at 
convergence, each one to an optimum. 
 

Repeat 
A chromosome c is considered to be the 
current one; 
Select all m individuals in the merging 
region of c, including itself; 
Remove all but the best chromosome 
from the selection; 

Until merging cannot be applied at all 

Algorithm 1 Merging procedure within GC 

 
Usually, the value of the merging radius is 

considered to be lower than the mating radius in 
order to permit crossover to take place multiple 
times between individuals during the evolution 
process; at the same time, one would not choose a 
high value for the merging radius as population size 
would be drastically decreased and this would not 
allow enough time for the exploration of the search 
space to take place. 

Summing up, there are some principles that, as a 
whole, make GC unique in comparison to any other 
evolutionary algorithm: 
1. Population size is variable. 
2. Sub-population structure is not predefined, but 
emergent.  
Sub-populations are formed and maintained due to 
the stepping stone principle connected to a local 
interaction scheme. GC starts with a large 
population of arbitrary solutions and population size 

may change at each generation, due to merging. 
Consequently there is not a predefined structure for 
sub-populations, but they are naturally formed and 
maintained. 
3. Each individual within the current population is 
considered a stepping-stone for the evolution 
process. 
Each individual is involved in the search process. 
This scheme has a very important role in 
maintaining diversity in the population as 
particularities of each individual are evolved at each 
step. 
4. A new operator is used for fusing very close 
individuals. 
A merging operator is used for reducing population 
size towards the final goal of containing only the 
optima. 
5. Apply merging and variation operators are 
applied until reaching multimodal convergence. 
At the end of the algorithm, each individual within 
the final population corresponds to an optimum. 
 

Initialize population; 
While termination condition is not satisfied 

Evaluate each chromosome; 
For all chromosomes c in the population do 

If mating region of c is empty then 
Apply mutation to c; 
If obtained chromosome is fitter than 
c then replace c; 
End if 

Else 
Select one chromosome from the 
mating region of c for crossover; 
Obtain and evaluate one offspring; 
If offspring is fitter than c then 
replace c; 
End if 

End if 
End for 
Merging 

End while 

Algorithm 2 GC Algorithm 

 
A description of the pseudocode of GC algorithm 

is pointed out in Algorithm 2. The stop condition of 
the algorithm may refer either to a pre-specified 
number of steps (generations) for which the 
algorithm will run or to a fixed number of 
generations without any improvement for which the 
algorithm should run or to a specified accuracy of 
the optimum that the algorithm must reach etc. 
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3 Other Algorithms in GC Framework 
This section overviews some algorithms that were 
developed with GC as a starting point. The reasons 
for building these models were various, among 
which the better exploration of the search space, the 
maintenance of diversity in the population or the 
speed up of convergence time were the most 
important targets. 
 
3.1 A Crowding Procedure within GC ([8]) 
The motivation for developing this new algorithm 
within the GC framework involves the preservation 
or even the improvement the ability of the standard 
technique to properly locate several or all optima 
within one go, and in addition speed up this process.  

In comparison to the standard approach, within 
present algorithm, an offspring can enter the current 
population and immediately take part to the 
evolution process; thus, the algorithm gains a lot in 
dynamism. In contrast to the stepping stone 
mechanism, the first parent is selected randomly. 
The offspring obtained after crossover does not 
replace any of the parents particularly, but the worst 
individual (with respect to fitness values) within its 
replacement radius, a new parameter of the 
algorithm. Thus, weak individuals are removed 
more aggressively (together with the effect merging 
has in this respect) from the current population. The 
local interaction principle and merging still hold. 

In present algorithm, diversity is not maintained 
by the fact that each individual represents a stepping 
stone, but because of the way replacement takes 
place, which happens as in crowding ([7]). 

The stepping stone principle does not apply here 
anymore, but n (where n is the number of 
chromosomes in the population) random individuals 
are selected instead. The reason for randomness is 
that individuals may be replaced by some offspring 
without ever being selected for recombination. An 
important aspect of the algorithm is the choice of the 
replacement radius value. If picked properly, this 
parameter may lead to improved convergence speed. 

Radii-based evolution in the context of the new 
algorithm is depicted in Figure 3. 

 
Fig. 3 Mating (left) and merging (right) within the new 
algorithm. As in Figure 2, c1 and c2 each produce one 
offspring. This time, the second offspring replaces its 

other parent – one of the chromosomes in its replacement 
area (lighter dotted circle) - because the latter is the worst 
chromosome within its replacement region. During 
merging, two chromosomes are removed, c2 and one 
offspring, because now three chromosomes are within 
merging radius from c2.  

 
The algorithm was applied for function 

optimization, as well as for two classification 
problems; obtained results were slightly better than 
those of the classical algorithm in the GC 
framework [9]. 

 
 
3.2 Cloning within GC [9] 
A cloning procedure is introduced within the 
algorithm presented in previous subsection in order 
to force a better exploration of the search space near 
the optima; this is performed by introducing more 
copies of an individual connected to a current 
optimum and applying mutation to them. Individuals 
resulting after mutation that are better than the initial 
one are introduced in the next generation. Through 
retaining only better individuals, exploitation of 
search space is also done. 

Cloning draws its roots from the theory of 
artificial immune systems ([2]). Cloning (Algorithm 
3) appears only if there is no individual left in the 
mating region of the current one. Thus, new 
individuals can appear in the population of the next 
generation and will be part of the same mating 
region; as a consequence, crossover will take place 
once more for the current individual.  

 
Begin 

An individual is considered to be the 
current one; 
A fixed number of clones (copies) of the 
current individual are made; 
Mutation is applied to all copies; 
Mutated copies are evaluated and all 
individuals that have a higher value for 
the fitness function than the one of the 
current individual are introduced in the 
population of the next generation; 

End 

Algorithm 3 Cloning procedure 

 
In GC algorithm, when an individual, c, remains 

alone in a region, i.e. there is no other individual in 
its mating area, mutation will be applied to it until 
the algorithm finally stops; this leads to a very high 
number of mutations that are applied to c. By 
introducing new individuals that are in the same 
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mating region with the current one, crossover will 
take place between them and a better exploration 
takes place. There is a fixed number of clones that 
may be introduced at each step (usually, between 1 
and 4). The cloning procedure introduces thus new 
individuals in the population, so the population size 
varies but, ultimately, the population will contain the 
pursued optima with significantly higher accuracies. 

The algorithm was applied for the optimization 
of three multimodal, two-dimensional functions 
([9]). Results emphasize the fact that obtained 
accuracies are considerably better but at the expense 
of a higher computational time. 
 
 
4 Applications of GC  
GC and variants of the original algorithm were 
successfully applied for the optimization of 
multimodal and highly multimodal functions, for 
clustering or for classification. Next subsections 
sketch out some of the interesting results obtained. 
 
 
4.1 Function Optimization 
Different types of functions were chosen for 
optimization using GC or variants of the standard 
algorithm. Some of them are outlined below: 

 Schaffer function on the [-20, 20]2 domain: 
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Schaffer and Schwefel functions have one global 
optimum surrounded by several local optima and the 
task was not to escape the global one. In both cases, 
GC located the global optimum with high 
accuracies. Although radii-based evolutionary 
methods usually attain poor results for highly 
multimodal problems, results obtained for Schwefel 
function, which was considered for up to 100 
dimensions, proved that GC remained very stable. 

When the task was to find several global optima 
(like in Himmelblau function case) or find a fixed 
number of global and local optima (i.e. Six-Hump 
Camel Back function), the individuals that formed 
the final population represented exactly the expected 
optima. In order to achieve that, some tuning for the 

parameters which determine the mating and merging 
radii was performed. Complete results regarding 
function optimization may be found in [8] and [9]. 
 
 
4.2 Classification 
Instead of using a unimodal genetic algorithm for 
the development of a learning classifier system 
(LCS), GC was chosen to be applied for classifying 
data by means of machine learning. The rules (if-
then type) represent a population that is evolved by 
GC; the rules cover the space of possible inputs and 
they are evolved in order to successfully be applied 
for the problem to be solved - the problems may 
range from data mining to robotics. 

Consider a data set and divide it into two parts – 
a training set and a test set. An LCS uses the 
samples in the training set i.e. the values of their 
attributes and the corresponding class for producing 
classification rules that are used in the decision-
making process. The rules are finally used to predict 
the class for each of the samples in the test set. 

An individual c = (c1, c2, ..., cn) is a string where 
each of the first n - 1 genes corresponds to an 
attribute of the samples from the data set. The last 
gene represents the outcome. Thus, an individual 
encodes an if-then rule. The condition is a 
conjunction of the first n – 1 attributes values and 
the conclusion is the class of the sample. Rules are 
evolved against the training set. The fitness of an 
individual is computed as its distance to all samples 
in the training set that have the same outcome (or 
class). Minimizing distances leads to good rules 
(representing cluster centers in the n-attribute 
variable space) for that outcome. A rule is 
considered successful if it matches the condition part 
of all data in the training set with the same outcome 
as itself. The match is determined using a distance 
measure between the individual (rule) and the object 
from the training set, experimentally defined as: 

∑
−

= −
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where ai and bi are the lower and upper bounds, 
respectively, of the i-th attribute. As the values for 
the n - 1 attributes belong to different intervals, the 
distance measure has to refer interval bounds. 

At termination of the algorithm, population size 
(number of rules) equals the number of classes at 
least. For each test sample, the rule which is closest 
will provide the corresponding class. 

This new LCS that may use the standard 
algorithm in GC or the variant with the crowding 
procedure within as engine has been successfully 
applied for several classification problems. Data sets 
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considered dealt diabetes diagnosis for Pima-Indian 
data set or the iris classification in Fisher’s data set 
[9]. The algorithm performed well and, in 
comparison to other methods, obtained accuracies 
were above average. An important result was its 
application on the issue of spam filtering [10], where 
results were very competitive. 
 
 
4.2 Clustering [5], [6] 
Other interesting attempts of dealing with clustering 
are presented in [1], [11].  In order to achieve a GC 
based unsupervised learning process upon a data set 
considered as in subsection above, individuals will 
encode cluster prototypes. They will be 
subsequently evolved by the means of GC, leading 
at convergence each to a cluster center. The number 
of cluster prototypes will be optimal with respect to 
the task at hand, as will the structure of each center.  

An individual c = (c1, c2, ..., cn-1) is therefore a 
string where each of the genes corresponds to an 
attribute of the samples from the data set. The 
expression of the fitness of an individual ix  is 
written as a sum of radial functions, centered in the 
samples to be clustered, and has to be maximized: 

∑
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Following experiments, the distance between two 
individuals is considered normalized Manhattan, as 
in previous section, since individuals encode 
attributes of samples. After centers are determined 
by GC, the assignation of samples to clusters is 
achieved by the method of closest prototype. 
 
 
5   Conclusions 
The main features of a recently proposed 
metaheuristic called genetic chromodynamics are 
presented in current paper. GC allows for a variable 
sized and emergent population. Solutions in the 
initial population are supposed to have different 
colors. Population dynamics is thus accompanied by 
color dynamics.  

The metaheuristic involves a local interaction 
principle among individuals. Sub-populations co-
evolve towards global and local optima. The final 
population contains as many solutions as (global and 
local) optima are detected.  

Obtained results for the application of GC for 
various problems like function optimization, data 
classification or data clustering sustain that GC 
represents a metaheuristic rather than a common 
evolutionary technique. 
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