
 1

Failure Impact on OpenAIS: An Experimental Evaluation
MU-CHI SUNG, MING-CHUN CHENG, ZHI XIN FAN, PING-JER YEH, SHYAN-MING YUAN

Department of Computer Science
National Chiao Tung University

1001, Ta Hsueh Road, Hsinchu 300
TAIWAN

CHIA-YUAN HUANG, LO-CHUAN HU

Information & Communications Research Laboratories
Industrial Technology Research Institute

195, Chung Hsing Road, Section 4, Chu Tung, Hsinchu 310
TAIWAN

Abstract: The Service Availability Forum (SA Forum) was formed to foster an ecosystem as a building block for
carrier-grade system development. It published a series of high availability specifications, commonly referred to
as Application Interface Specification (AIS) and Hardware Platform Interface (HPI). In this paper, we try to
evaluate recent implementation of the only one open source AIS-compliant middleware, OpenAIS, to see
whether it satisfies the critical needs of failure impact in many carrier-grade applications. Our benchmark is
conducted in two cases: processor leave and processor join, and evaluates several parameters crucial to the
usefulness of the membership protocol. The result shows good performance for both cases. Finally we point out
some possible directions to improve the worst-case time of OpenAIS.

Key-Words: Service availability, OpenAIS, Totem, failure impact evaluation, carrier-grade service

1 Introduction
As broadband booms and technology evolves,
communication and data service providers are
challenged to seek for cost-down while upholding
carrier class services with high availability. When
there is a need to deploy a new service, however,
current practice of using proprietary and
special-purpose hardware/software combinations
makes design limited and maintenance expensive.

To survive in today’s competitive marketplace,
therefore, they head for other high availability
platform solutions that have shorter time to market
and are less expensive to maintain. As a result, the
Service Availability Forum (SA Forum) was formed
to push the delivery of next-generation service
availability solution based on Carrier-Grade Linux
(CGL). The SA Forum then published the
Application Interface Specification (AIS) [1] and
Hardware Platform Interface (HPI) [2] with works
contributed from many industry-leading companies
to enable providers to build their high availability
hardware/software solutions under an agreed
standard.

AIS only specifies the interface, not the
implementation details. So far, the only one open
source implementation for AIS-compliant

middleware is OpenAIS [3]. The OpenAIS project
was started in early 2002, and in 2003 it was morphed
to develop an AIS-compliant middleware. After more
than four years’ development, OpenAIS successfully
makes use of leading networking technologies to
provide high availability complying with the AIS.

Since the official AIS is still under evolving, it is
obviously impossible for OpenAIS to keep
up-to-date to provide all defined services.
Nevertheless current OpenAIS implementation still
provides a good platform for building applications
that maintain service during faults for the sake of
well-designed architecture and effective group
communication algorithms (to be discussed briefly in
Section 2).

For service providers, however, they cannot
adopt this OpenAIS solution without essential
premises on service continuity [4][5], such as short
system response time and, more importantly, short
system recovery time from failure. Providing service
continuity is not an easy job for various carrier-grade
applications. Strict constraints such as different QoS
requirements have to be achieved to make services
acceptable from users’ perspective. Furthermore,
different criteria of acceptance may be expected by
different groups of users. For example, the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 2

phone-to-phone delay in public telecommunication
service should not exceed 150 ms [6], consisting of
several components [7]:

- Network Delay is the delay during signal
propagation on the network.

- Codec-Related Delay is the delay in
packetization, look-ahead processing, and
encoding.

- Jitter Buffer Delay occurs during smoothing out
signal variation in network delay.

Undoubtedly service providers expect a middleware
such as OpenAIS to perform its job well and at the
same time minimize the delay incurred by all kinds of
network events, since the middleware may take parts
in all types of equipment and introduce a variety of
delay. Therefore, this paper aims to explore the
minimum delay of OpenAIS under the presence of
processor failure and new processor installation, and
to examine whether the current OpenAIS
implementation satisfies the crucial needs in
carrier-grade applications.

The rest of this paper is organized as follows.
Section 2 introduces the OpenAIS architecture and its
underlying network protocol. Section 3 describes the
evaluation method and crucial adjustable parameters
to be measured and fine-tuned. Section 4 presents the
benchmark results. Section 5 discusses the findings
and proposes possible improvements. Section 6
offers brief concluding comments.

2 OpenAIS Overview
In this section, we will take a closer look at the
OpenAIS architecture and briefly explain the
network protocol since they are essential to a proper
understanding of the experiment and results
discussed in the following sections.

2.1 Architecture
From the architectural perspective, the OpenAIS can
be split into two main parts, one for the library part,
and the other for the executive part, as shown in Fig.
1. The library part implements and maintains data
structures for the AIS standards, while the executive
part acts as a server program running on each node
(or more precisely, processor) to complete client
requests from the library part in the same context.
When an application wants to use the standard
interface, it needs to initialize an instance of the
library first, and then the library instance will create
several connections to the local executive server on
behalf of the application itself.

All executive servers running on participating
nodes (one executive server instance per node) will

form a group and communicate with one another as a
single cluster to provide AIS services, including:
− Availability management framework (AMF)
− Checkpoint service (CKPT)
− Cluster membership service (CLM)
− Event service (EVT)
− Message service (MSG)
− Distributed lock service (DLOCK)

Among them, AMF and CKPT are used to mask
many types of faults in upper application and
operating system, and to help developer to create
redundant data against failures in a distributed
fashion. On the other hand, CLM, EVT, MSG, and
DLOCK provide communication and coordination
features in distributed environment.

2.2 Reliable Multicast Protocol
AIS does not specify implementation details. To
support distributed AIS services among multiple
nodes, there must be a group communication layer
inside the OpenAIS protocol stack as the basic
infrastructure. Thus, OpenAIS adopted the Totem
reliable multicast protocol [8] to satisfy such needs.

The Totem protocol was first proposed in 1995
and has been improved for several years. It is now
widely accepted as a proven effective approach to
achieving reliable group communication. Even
though there are so many reliable multicast protocols
proposed with quite different categories of purpose,
Totem was designed mainly to reduce message
latency and increase message throughput under the
condition of group membership changes and unstable
network. Totem’s property of consistent membership
has made it suitable for carrier-grade application
domain, under which applications need to work as
usual against processor failures.

To manifest related parameters used in our
evaluation section, the Totem protocol is briefly
described here. More detailed and formal
definitions/proofs can be found in [9].

The Totem reliable multicast (formally termed
Totem single or multiple ring protocol) employs one

Fig. 1: OpenAIS architecture

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 3

or more logical-passing rings within a broadcast
domain, respectively. With four basic control
mechanisms (total ordering protocol, membership
protocol, recovery protocol, and flow control
algorithm), all messages are delivered under the
constraints of extended virtual synchrony [10] and
consistency is maintained under the condition of
membership changes. OpenAIS only uses the first
three mechanisms of Totem, and this paper only tries
to evaluate the membership protocol.

In Totem’s single ring protocol, all processors
form a logical ring, and a token continuously
circulates around in a certain order. Whenever a
processor receives a token passed from the previous
processor, it is allowed to broadcast messages to all
the other processors (see Fig. 2) and modifies the
token accordingly. In this manner, messages can be
delivered in an agreed or safe order. Once any fault
occurs, which would stop some processors from
responding, the logical ring will be broken and the
membership protocol will be started within a given
period of time slice to rebuild a new ring.

Inside the membership protocol, there are
several states and transitions between them, as shown
in Fig. 3. Normally every processor is in the
operational state. If it receives a foreign join message,
implying that one or more faults occur somewhere in
the ring, it will turn into the gather state. In the gather
state, each processor broadcasts join messages,
perceives and revises a new temporary membership

set, gathers necessary information, and tries to reach
a consensus about the new ring configuration. If all
processors in the newest temporary membership set
have the same view on the new ring, they will turn
into another state called commit state. In the commit
state, a new representative is elected and it will issue
a special token to circulate around the new ring. After
this special token is circulated, all processors are
ensured to agree on the new membership and then
shift to the recovery state. In the recovery state,
messages will be recovered and redelivered
according to Totem’s ordering constraints, and all
processors will go back to the operational state one
by one after the next token circulation.

The whole process of membership protocol is
not as simple as the one described here, but
conceptually it can give some ideas about how the
membership protocol works. As you can see, if we
are trying to measure or to reduce the failure impact
on service continuity, OpenAIS’s implementation of
the membership protocol dominates the overall
performance.

3 Evaluation Method

3.1 Environment Setting
The experiment is conducted in a closed system with
4 nodes running OpenAIS 0.70 and 1 node as the log
server, as shown in Fig. 4. The 4 OpenAIS nodes are
of the same model with Pentium 4 2.4 GHz and 1 GB
main memory, running RedHat 9.0 with 2.4.20-8
official kernel. All standard services are removed to
keep the environment as simple as possible. The log
server is VIA EPIA MII platform with 256 MB main
memory, running RedHat 9.0 as well. The closed
system is connected by a 100 M/bits Ethernet with a
D-Link DES-1008D switch.

Fig. 2: Token passing on the Totem network

Fig. 3: State diagram in membership protocol

OpenAIS OpenAIS

OpenAIS OpenAIS

Logging
Service

Fig. 4: Experiment Environment

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 4

To measure the membership protocol execution
time, we inject some code snippets into OpenAIS to
inspect the time elapsed in each state and send
notification to the log server. The time for every
event is measured by the high resolution timer, which
makes use of rdtsc assembly instruction to obtain
current CPU clocks. Also, to achieve best
performance, we remove extra time-out limits in
OpenAIS since they were originally used to prevent
unstable configuration.

3.2 Adjustable Parameters Relevant to the

Gather State
The visible performance of OpenAIS under the
condition of failure depends heavily on the internal
parameter settings of the membership protocol. To
investigate the failure impact on OpenAIS, several
parameters have to be fine-tuned to find the lower
bound of execution time required to rebuild a new
ring in both cases of processor join and leave. The
following text identifies relevant parameters that may
affect the performance of the membership protocol
(and consequently, OpenAIS): join, consensus, and
token loss time-out.

Whenever a fault is perceived, operational
processors will turn into the gather state and try to
reach consensus on a new configuration (mentioned
in Section 2.2). As one processor receives and
perceives a temporary configuration inside any
foreign join message, it will broadcast yet another
join message containing a new configuration it
revises after a small time span called join time-out.
This time-out is used to prevent message burst that
would unstabilize the whole network in the beginning
of the gather process. There is a trade-off here: the
shorter the join time-out is, the more quickly the
gather process would run, but the more likely the
network would be unstable.

All operational processors would broadcast join
messages continually until they finally reach a
consensus on the new configuration. Therefore,
OpenAIS will never know exactly which processors
have failed until the so-called consensus time-out
expires. The consensus time-out was started
immediately after entering the gather state. When it
expires, all operational processors will add
no-responding ones to the so-called failed processor
list, re-enter the gather state, and try to reach
consensus before the next consensus time-out
expiration. Here comes another trade-off, too: the
shorter the consensus time-out is, the more quickly
the failed processors are identified, but the more
likely an operational processor would be
misunderstood as a failed one.

3.3 Adjustable Parameters Before Entering
the Gather State

While the join time-out and the consensus time-out
are used in the gather state, the token loss detection
time-out and token retransmission time-out
determine the time needed from the time when any
failure occurs to the time when the gathering process
is invoked.

Tokens in the logical ring could be lost due to
processor failure or network partition. Both cases can
be detected by the token loss time-out, and can be
solved by the membership protocol discussed
previously.

The token retransmission time-out is more
implementation-oriented. In OpenAIS, tokens are
transmitted between each node on the logical ring by
UDP unicast, rather than UDP multicast or TCP.
Since UDP unicast is not a reliable transmission
facility, tokens could be lost due to various reasons
such as switch buffer overflow. To resolve such
circumstances, OpenAIS uses the token
retransmission time-out to know when it should
retransmit the token to the next hop. The default
value for the token transmission time-out is about 1/4
of the token loss time-out; that is, all processors will
retransmit the token for 4 times before invoking the
gathering process.

As a processor receives a token from the
previous hop, it will restart the token loss time-out
and the token retransmission time-out. As a result,
the token retransmission time-out decreases the
probability of token loss between hops. It is also
obvious that the next hop of the failed processor will
be the first one recognizing the failure and initiating
the gathering process.

3.4 Evaluation Procedure
In the series of experiments we try to adjust different
parameters one by one to minimize the latency in
configuration changes, and to observe the
correlations among all these factors.

A single run for each parameter evaluation is
automated by killing the in-memory process of
OpenAIS and then restarting it on the specific node.
As soon as the node leaves the ring, the log
server will be notified (by the injected code) to record
and measure the token loss detection time. Every case
in our experiment is conducted for 100 runs to obtain
the average performance.

4 Experimental Result
This section shows and discusses our experimental
result. Since the situations for processor joins and

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 5

leaves behave quite differently in the membership
protocol, we will show the results in different figures.
Section 5 will go further to propose an alternative
approach to improving worst-case failure detection
time and to eliminating the destined consensus
time-out.

4.1 Impact of Join Time-out
In Fig. 5, when some processors leave from current
configuration, the time taken by membership
protocol remains almost the same. The reason is that,
by definition all operational processors must wait
until the consensus time-out expires so that they can
continue to add the leaving processors into the failed
processor list. In this case, the membership protocol
performance is dominated by the consensus time-out,
which is 200 ms by default.

In Fig. 6, when foreign processors join in,
different join time-out results in different
performance in the membership protocol. The result

is quite intuitive. In our experiments, with the default
consensus time-out and token loss time-out, the join
time-out can be shortened to 1 ms without
unstabilizing the system, and the time spent in the
gather state can be reduced to 1.4 ms on average.

4.2 Impact of Consensus Time-out
To shorten the time in the processor leave case, we
move on to change the consensus time-out while
keeping the optimized join time-out setting obtained
previously since our goal is to minimize the latency.

In Fig. 7, the time in the gather state declines as
the consensus time-out decreases. However, when
the consensus time-out drops down to 15 ms or less,
the system will never reach consensus. The reason is
that the consensus time-out always expires before all
processors ever have a chance to agree on a new
membership.

In Fig. 8, since the consensus time-out is
irrelevant to processor join, the performance of the

Fig. 5: Different join time-out: the processor leave
case

Fig. 8: Different consensus time-out: the processor
join case

Fig. 7: Different consensus time-out: the processor
leave case

Fig. 6: Different join time-out: the processor join
case

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 6

membership protocol will remain the same. In fact
this is the best performance OpenAIS can achieve in
the case of processor join in our experiment.

As can be seen from Fig. 5 to Fig. 8, the time
spent in the commit state and the recovery state
remains almost unchanged for different join time-out
and consensus time-out since it only depends on the
token rotation time.

4.3 Impact of Token Loss Time-out
So far we have identified the best settings for the join
time-out and the consensus time-out. However, it is
the token loss time-out that controls the time required
to detect any failure. The default value for the token
loss time-out in OpenAIS is 1 second, but it may be
too long for most carrier-grade application.

In Fig. 9, the time for the token loss detection is
in proportion to the token loss time-out. However,
there is a lower bound for this time-out because token
rotation on the logical ring also takes time. In the
conducted experiment, we observe the token loss
time-out cannot be shorter than 30 ms in our system;
otherwise the system would become unstable with
the probability of 0.17 to enter the gather state
without real configuration change events.

5 Discussion
So far, the best performance for processor join is
about 13.84 ms, while for processor leave is as large
as about 65.97 ms. There are two reasons for such
differences.

5.1 Token Loss Detection
Because Totem detects network or processor failure
by various time-out (mentioned in Section 3.3), the
token loss time-out cannot be removed completely.
Nevertheless, it could be lower than the current limit.

If we change the transport mechanism of token
from the UDP unicast to multicast, we can relax the
limit. In this manner every time a token is transmitted
from one hop to another, all processors would
recognize the fact that the source processor is alive
and that the token is not lost, so the token loss
time-out can be restarted. This allows us to shorten
the token loss time-out to a multiple of the
transmission delay between two hops. In such case,
the token loss time-out will no longer be bounded by
the number of nodes, which improves a lot in case of
large number of nodes.

5.2 Destined Consensus Time-out
Whenever a processor leaves or fails, OpenAIS
would initiate the gathering process of the
membership protocol. By definition all operational
processors must now wait for at least one consensus
time-out (mentioned in Section 3.2) to determine
which processors have failed and to exclude them
from the new ring configuration.

This destined consensus time-out can be
avoided if all operational processors know exactly
the failed processor at the very beginning of the
gathering process. It could be achieved by the same
approach to lessening the token loss time-out. If we
employ multicast in OpenAIS, all operational
processors would receive tokens from all the others
except the failed ones. As a result we could probably
put those processors who did not broadcast tokens
during the previous rotation into the failed processor
list, reach consensus on the new membership quickly,
and avoid the destined consensus time-out.

Of course, changing the transport mechanism of
tokens requires more careful consideration from the
design perspective. We propose the potential
problems and possible solutions for readers
interested in further improving the OpenAIS
performance or in understanding the limit of the
latest implementation of OpenAIS.

6 Conclusion
With the explosion in carrier-grade online services,
an ecosystem to foster application development is
becoming imperative to reduce the cost and the
time-to-market. In this paper, we have evaluated the
state-of-the-art implementation of an AIS-compliant
middleware, OpenAIS, to see whether it is a practical
and adequate platform for carrier-grade applications.
Although these experiments were conducted under a
simple scenario without external communication
burst (high system load from other processes), and
without real-world carrier-grade network equipments

Fig. 9: Different token loss time-out: the processor
leave case

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

 7

(carrier-grade IP switches with MPLS features), the
proposed results are still useful for application
developers to help assessments based on the concern
of service continuity. They can assess whether
OpenAIS fits their targeted application domain based
on the time lower bound of the membership protocol
during which services are interrupted.

Moreover, the proposed directions to decrease
worst-case failure recovery time of OpenAIS makes
it possible to further improve the service continuity
without the need to buy faster transport media such as
gigabit Ethernet.

To summarize, OpenAIS is still a good choice
for application developers while selecting
commercial-off-the-shelf (COTS) building blocks in
creation of high availability applications.

References:
[1] Service Availability Forum, Service Availability

Interface Overview B.02.01, 2005
[2] Service Availability Forum, Hardware

Platform Interface Specification B.01.01, 2004
[3] OpenAIS,

http://developer.osdl.org/dev/openais/
[4] Catherine Boutremans, Gianluca Iannaccone,

and Christophe Diot, Impact of link failures on
VoIP performance, Proceedings of the 12th
International Workshop on Network and
Operating Systems Support for Digital Audio
and Video, ACM Press, Miami, Florida, USA,
2002, pp. 63-71

[5] Cornelis Hoogendoom, Karl Schrodi, Manfred
Huber, Christian Winkler, and Joachim
Charinski, Towards Carrier-Grade Next
Generation Networks, Proceedings of
International Conference on Communication
Technology, IEEE Press, Beijng, China, 2003,
pp. 302-305

[6] Yan Chen, Toni Farley, and Nong Ye, QoS
Requirement of Network Applications on the
Internet, Information, Knowledge, Systems
Management, Vol. 4, No. 1, 2004, pp. 55-76

[7] Raj Kumar Rajendran, Samrat Ganguly, Rauf
Izmailov, and Dan Rubenstein, Performance
Optimization of VoIP using an Overlay
Network, Technical Report, July 2006
http://www.ee.columbia.edu/~kumar/papers/
icdcs06.pdf

[8] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A.
Agarwal, and P. Ciarfella, The Totem
Single-Ring Ordering and Membership Protocol.
ACM Transactions on Computer Systems, Vol.
13, No. 4, 1995, pp. 311-342

[9] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal,
R.K. Budhia, and C.A. Lingley-Papadopoulos,
A Fault-Tolerant Multicast Group
Communication System. Communications of
the ACM, Vol. 39, No. 4, 1996, pp. 54-63

[10] L.E. Moser, Y. Amir, P.M. Melliar-Smith, and
D.A. Agarwal, Extended Virtual Synchrony,
Proceedings of the 14th International
Conference on Distributed Computing Systems,
IEEE Computer Society, Pozman, Poland, 1994,
pp. 56-65

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp469-455)

