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Abstract: Due to the recently rapid development of multimedia applications, multicast has become the critical
technique in many network applications. In this paper, We investigate contemporary research concerning multicast
congestion problems with the objective of minimizing the maximum sharing of a link. These problems include:
multicast Steiner tree and multicast packing problem, etc. Most of these problems have already been proved as NP-
complete, thus are mainly formulated as the Integer Linear Programming (ILP). Our objective is to investigate and
analyze some of most recently developed approximation algorithms for the optimization of multicast congestion
problems. We also discus how they are modelled and solved in the literature.

Key–Words:Approximation Algorithm, Multicast packing, Multicast Steiner trees, Randomized metarounding,
Integer Linear Programming, LP-Relaxation

1 Introduction

In multicast routing, the main objective is to send data
from one or more sources to multiple destinations in
order to minimize the usage of resources such as band-
width, communication time and connection costs. The
multicast congestion problem is to find a set of multi-
cast trees that minimize the maximum congestion over
all its edges. The congestion of an edge is the number
of multicast trees that use the edge. Given a physical
networkG = (V,E) with a setV of n nodes, a setE
of undirected network links andm multicast requests
S = S1, S2, . . . , Sm being subsets ofV , a solution
to the problem is a set ofm trees such that theith

tree spans the nodes of theith multicast request. The
objective function is to minimize the maximum con-
gestion. The problem is formulated as an ILP (Integer
Linear Programming) and its LP relaxation solution
finds fractional solutions for each multicast request.

In the multicast packing problem, the network
tries to accommodate simultaneously all the multicast
groups (many-to-many) and avoid bottlenecks on the
links to achieve higher throughput (i.e., minimize the
maximum link sharing among the multicast groups).
A shared tree can be considered as the backbone of
a group multicast session. One way to minimize the
maximum congestion is to increase the size of some
multicast trees, but this also increases the delay which
must be considered in the objective function of the

optimal packing problem formulation. The delay is
a function of the amount of dilationα from the size
of the optimal tree obtained for each group multicast
independently from the others (i.e., in isolation).

Priwan [1] proposed both heuristic algorithm
finding approximate solution and search enumera-
tion based algorithm finding optimal solution, and
compared the approximate solution with the optimal
solution in order to lower costs for the subscribers
and conserves bandwidth resources for the network
providers. In these algorithms, the connection ap-
proach is based on setting multicast tree routes that
each participant (site) has one own multicast tree con-
necting to the other participants under two constraints:
the delay-bounded constraint of source-destination
path and the available constrained bandwidth for the
service of links.

In [3], Wang formulated the problem as a tree
packing problem with multiple multicast sessions
under a capacity limited constraint and proposed
two heuristic algorithms, Steiner-tree-based heuristic
(STH) algorithm and cut-set-based heuristic (CSH) al-
gorithm, for solving this problem. They showed that
the STH algorithm can find a better approximate solu-
tion in a shorter computation time compared to CSH.

The remainder of this paper is organized as fol-
lows: Section 2 discusses the multicast Steiner Trees
problems in general graphs with the objective of min-
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imizing the maximum sharing of a link. We outline
and analyze some of most recent approximation algo-
rithms and related lower bounds for these problems.
In Section 3, we discuss the Multicast Packing Prob-
lem. Discussion is given in Section 4.

2 The Multicast Steiner Trees Prob-
lem

The Steiner tree problem is solving combinatorial op-
timization problem when adding new vertices is per-
mitted before finding the Minimum Spanning Tree
(MST). It can be divided into three categories: Eu-
clidean Steiner tree problem, metric Steiner tree prob-
lem, and Steiner tree in graphs which is focussed on
this paper. The Steiner tree problem has applications
in circuit layout or network design [12, 13, 14, 15, 16].
Most versions of the Steiner tree problem are NP-
complete (computationally hard). Some restricted
cases can be solved in polynomial time. In practice,
heuristics are used.

In this section, we discuss the multicast Steiner
Trees problems including the objective functions and
approximation algorithms for minimizing the sum of
the congestion over all edges.

The Steiner tree problem is to minimize the sum
instead of the maximum of the congestion over all
edges in which a single multicast request consists of
more than two nodes. Finding edge disjoint paths
(the boolean satisfiability problem) was first proved
as a NP-complete problem by Karp back in1972 [4].
Finding a minimum Steiner tree is max-SNP hard (see
[6] for details) and an approximate ratio solution (1+ε)
(ε > 0 is a constant) for the special case of edge
length equal to1 or 2 was found in [5]. In Steiner tree
problem, different graphs are formed dynamically as
different multicast Steiner trees so that the maximum
flows of the generated multicast Steiner trees are min-
imized. The congestion of an edge is the number of
multicast trees that use the edge. The problem is to
find a set of multicast trees that minimize the maxi-
mum congestion over all the edges.

2.1 The Iterative Randomized Rounding Al-
gorithm

A Linear Programming (LP) for any Integer Program-
ming (IP) can be generated by taking the same ob-
jective function and same constraints but with the re-
quirement that variables are integer replaced by ap-
propriate continuous constraints. The LP relaxation
of the IP is the LP obtained by omitting all integer
and 0-1 constraints on variables.

Randomized rounding is a probabilistic method
to convert a solution of a relaxed problem into an
approximate solution to the original problem. Re-
laxation is an optimization problem with an enlarged
feasible region and extended objective function com-
pared with an original optimization problem.

Let G = (V,E) denote a physical network ofn
nodes,S1, S2, · · · , Sm denotem multicast requests, a
binary variablexte indicating whether edgee is cho-
sen for thetth multicast, to ensure that any solution
to the ILP connects all the vertices of each multicast,
the problem is formulated as follows by Vempala and
Vöcking in [7] :

Minimize z
Subject to∑
e∈δ(S)

xte ≥ 1, ∀t, ∀S ⊂ V, S ∩ St 6= ∅,

(V \S) ∩ St 6= ∅∑
t

xte ≤ z, ∀e ∈ E

xte ∈ 0, 1, ∀t,∀e ∈ E
In the case for each multicast consisting of only

two nodes, a LP relaxation solution was obtained by
relaxing the binary variable to0 ≤ xte ≤ 1 and any
fractional solution of the ILP is decomposed into sev-
eral paths. Each path is associated with a fractional
weight so that the sum of the weights of the frac-
tional paths for each multicast is1 and the sum of
the weights of the fractional paths crossing the edge
e corresponds to the weight of that edge.

In the case for each multicast consisting of more
than two nodes, the LP relaxation was described in
terms of a multicommodity flow between pairs of
nodes of each multicast.

Let the binary variableft(i, j) denote the flow be-
tween the nodesi andj in the tth multicast and the
xte(i, j) denote the flow on edgee of commodity(i, j)
in the tth multicast, the problem is formulated as the
following ILP:

Minimize z
Subject to
xte(i, j) ∈ ft(i, j), ∀ t, ∀ i < j ∈ St∑
i∈S∩St,j∈(V \S)∩St

ft(i, j) ≥ 1, ∀t,∀S ⊂ V∑
t,i,j

xte(i, j) ≤ z, ∀e ∈ E

0 ≤ xte ≤ 1
An iterative randomized rounding algorithm was

proposed as follows by Vempala and Vöcking:
Step 1. Decompose the fractional solution into flow
paths.
Step 2. Choose one path randomly out of each mul-
ticast node with probability equal to the value of the
flow on the path, i.e., randomized rounding.
Step 3. If the multicast nodes are all connected then
stop and output the solution, otherwise, contract the
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vertices corresponding to the connected components
and form a new multicast problem with regarding the
contracted vertices as the new multicast nodes.
Step 4. The original fractional solution was derived
from the solution of the new multicast problem de-
composed from the fractional solution. Repeat the
above steps till all multicast nodes are connected.

In this way, there are at mostlog k iterations
(k is the maximum number of nodes in a multicast).
With high probability, the congestion of the solution
found by the algorithm has an approximation bound
less thanO(log k ·OPT + log n).

2.2 The General Randomized Rounding Al-
gorithm

Randomization is a powerful technique in finding ap-
proximate solutions to difficult problems in combi-
natorial optimization by solving a relaxation (usually
linear programming relaxations or semidefinite pro-
gramming relaxations) of a problem and then using
randomization to return from the relaxation to the
original optimization problem.

De-randomization can be applied by using stan-
dard techniques to yield deterministic polynomial-
time algorithms that yield approximations as good
as those given by the randomized algorithms they
are derived from, even though the process of de-
randomization typically takes a relatively simple and
clean randomized rounding procedure and turns it into
a complex and generally slower deterministic algo-
rithm.

In [8], Carr and Vempala proposed a general ran-
domized rounding algorithm in polynomial time for
constructing a convex combination based on the ellip-
soid method.

Assume that a polynomial-time algorithmA is an
r-approximation algorithm to a min-ILP problem with
the LP relaxationP thenA finds a solution with the
cost being at mostr (integrality gap) times the cost
of the optimal solution to the LP relaxationP of the
ILP. A min-ILP or max-ILP problem is a minimization
or maximization problem, respectively, whose set of
feasible solutions can be described by a positive ILP.

LetP denote a LP relaxation of ILP by employing
ther-approximation algorithmA, x∗ denotes a feasi-
ble solution ofP(I), Z denote an integer polytope,
andP denote a LP relaxation ofZ, then according to
[9], r ·x∗ dominates a convex combination of extreme
points ofZ(I).

Also let I denote a min-ILP problem,Z(I) de-
note the integer polyhedron for the ILP,P (I) denotes
the LP relaxation ofZ(I), xj denote an extreme point
of Z(I), x∗ denote a feasible solution ofP(I), and
ext(P ) denote the set of extreme points for a polyhe-

dron, the problem of the LP relaxationP of a positive
ILP along with anr-approximation algorithm is for-
mulated as follows:

r · x∗ ≥
∑
j

λj · xj (1)

where
∑
j

λj = 1, λj ≥ 0, for ∀ j.

In order to construct a set ofxj ’s which satis-
fies (1), letx∗ denote a feasible solution forP (I),
ext(Z) = {xj |j ∈ J}, E denote the index set for
the variables inP (I), andxc denote the solution for
each non-negative object function c returned by the
r-approximation algorithmA, the problem is formu-
lated as the following ILP and solved in order to ob-
tain (1):

Maximize
∑

j∈J λj

subject to∑
j∈J λj · xj

e ≤ r · x∗
e, ∀e ∈ E (2)

Maximize
∑

j∈J λj ≤ 1
λj ≥ 0, ∀j ∈ J
The solutionλ∗ of (2) provides an explicit con-

vex decomposition into points inext(Z), i.e.,r ·x∗ ≥∑
j∈J ′

λ∗
j · xj , J ′ := {j ∈ J |λ∗

j ≥ 0. The sum-

mation in this inequality is a linear combination of
{xj |j ∈ J ′} ⊂ ext(Z) dominated byrx∗ and it is
a constructed convex combination if

∑
j∈J ′

λ∗
j = 1.

Obviously, (2) has an exponential number of vari-
ables and in order to obtain an approximate bound on
its dual ILP as follows, it was further solved by em-
ploying the r-approximation algorithm:

Minimize r · x∗ · w + z
subject to
xj · w + z ≥ 1, ∀j ∈ J (3)
we ≥ 0, ∀e ∈ E
z ≥ 0
(3) also has an exponential number of variables

and was solved in polynomial time by using the ellip-
soid method and has an optimal solution of1.

3 The Multicast Packing Problem
In the Multicast Packing Problem, there are a num-
ber of applications which try to use the network for
the purpose of establishing connection and sending
information, organized in different groups. Thus, the
network capacity must be shared accordingly with the
requirements of each group based on known heuris-
tics for constructing Steiner trees and the cut-set prob-
lem or using integer programming to find the min-
imum cost under bounded tree depth and the cost
minimization under bounded degree for intermediate
nodes [3, 1, 2].

In [19], Noronha and Tobagi proposed an effi-
cient solution by employing decomposition principle
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to speed up LP of the problem and by enhancing
value-fixing rule to prune the search space of the IP.
Ofek and Yener [11] presented a window-based re-
liable multcast protocol with a combined sender and
receiver initiation of the recovery protocol in order to
combine the multicast operation with the internal flow
control. They proposed two Min-Max objective func-
tions: one for delay which is caused by the number
of links needed to connect the multicast group; the
other for congestion which is caused by sharing a link
among multiple multicast groups. In [20], Grötschel,
Martin, and Weismantel considered the Steiner tree
packing problem from polyhedral point of view, called
polyhedron, which can be described by means of in-
equalities that define the facets of the Steiner tree
polyhedrons. They presented joint-inequalities for
these polydrons based on cut-and-branch algorithm.
Baldi, Ofek and Yener [21] proposed an approach
based on the embedding of multiple virtual rings, one
for each multicast group, to route messages to all the
participants of multicast group while minimizing the
bound on the buffer sizes and queueing delays so as
to resolve two problems raised from the time-driven
priority flow control scheme proposed in [22]: one is
the scheduling problem in which how time intervals
are reserved to each multicast group and the other is
the adaptive sharing problem in which how the active
(transmitting) participants can dynamically share the
time intervals that have been reserved for their multi-
cast group.

In this section, we discuss the multicast packing
problem including the objective functions and approx-
imation algorithms for minimizing the maximum link
sharing among multicast groups (i.e., the congestion
over all edges). In the multicast packing problem, the
minimization of network congestion is defined as the
total load of the most congested edge and the load
(or congestion) of an edge is the total traffic demand
summed over the multicast groups using that edge so
as to prevent bottlenecks and thus increase utilization
(or throughput).

Given a physical networkG = (V,E) whereV
is the set of nodes andE is the set of the undirected
network links, a weightwe > 0 (such as cost, delay,
and distance) is associated with each linke ∈ E.

Let K denote the set of multicast groups, a set of
nodesM ⊆ V denote a multicast group, andmi de-
note any arbitrary member ofM , the objective of the
multicast packing problem is to find a subgraph ofG
that spansM and has the minimum total cost. The
subgraph is required to be a tree and the cost is mea-
sured as the sum of the weights of the edges in the
solution. Since the objective of the multicast pack-
ing problem is to minimize the maximum sharing of a
link instead of individual multicast tree cost, the solu-

tions might produce high-cost multicast trees. In order
to bound the cost of each multicast tree to guarantee
service quality for some cases, the size of some trees
may be increased. Assume that, for simplicity, each
link has the same cost such as unit cost and the cost of
a multicast tree is the total number of its links.

Givenk ∈ K (k is a multicast group andK is the
set of multicast groups), LetOPT k denote the cost
of the least-cost multicast tree, if the ratio of the cost
of the multicast tree in the solution to the cost of the
least-cost multicast treeOPT k exceeds a threshold
α ≤ 1, then a cost based on the dilation from the size
of the optimal tree obtained for each group multicast
independently from the others is incurred.

Also given a linke ∈ E, let Ke ⊆ K denote
the set of multicast groups that use linke in the solu-
tion,ze denotes the total congestion on linke such that
ze =

∑
k∈Ke

tk wheretk is the amount of traffic gen-
erated by the multicast groupk, λ = maxe{ze} de-
note the maximum congestion, a binary variablesxk

e
for all e ∈ E andk ∈ K, tk denoting a traffic load of
multicast groupk ∈ K, ST k = {xk ∈ {0, 1}|E| : xk

induces a Steiner tree spanningMk,
∑

e∈E we ·xk
e de-

note the cost of the multicast tree in the solution for
multicast groupk ∈ K, OPT k denote the size of the
optimal tree for multicast groupk in isolation,P k ≥ 0
denote the cost coefficients, andπk ≥ 0 used to mea-
sure the threshold, in [10], the tree packing problem
was formulated by Chen, G̈unlük, and Yener as the
following ILP:

Minimize λ(λ = maxe{ze}) +
∑

k∈K
P k · πk

Subject to
xk

e ∈ ST k, ∀k ∈ K∑
k∈K

tk · xk
e ≤ λ, ∀e ∈ E

πk ≥ 1
OPT k (

∑
e∈E

we·xk
e−(α·OPT k)), ∀k ∈ K

3.1 The Multicast Packing Heuristic Algo-
rithm

An approximation algorithm considering each multi-
cast in isolation and taking the set of optimal multicast
trees computed independently was proposed by Chen,
Günlük, and Yener for packing multicast trees with
minimum congestion is as follows:
Step 1. Solve the optimization problem for each mul-
ticast group independently.
Step 2. Compute the congestion for each edge and
rebuild the multicast treesT ′ based on the results from
step 1: the treeT = {Tx : x = 1, 2, 3, ...,m} and a
bound on the tree sizeα ·OPT k.
Step 3. Sort all edgese by ze (the total congestion on
link e) into an array in decreasing order.
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Step 4. Choose an edgee′ with the maximum conges-
tion Z

Step 5. try each treeTx ∈ T until a new treeTy can
be found such that each edge inTy has the congestion
value no greater thanZ − 1 and treeTy can be rebuilt
without exceeding the size limitα.

Step 6. Updateze values in the array and go to step 3.
Stop if the array cannot be updated.

In [11], Ofek and Yener proposed a way to rebuild
the above disconnected tree by constructing a new tree
from scratch that does not use the congested link be-
cause it may cause an increase in the congestion on
some links that are already used by the other multi-
cast trees. Thus the links to be used in the new treeTy

can have a congestion value at mostZ − 2 (Z is the
maximum congestion).

Chen, G̈unlük, and Yener [10] proposed a more
efficient algorithm considering the cut obtained by re-
moving the congested linke′ from the new treeTy. If
there is a link e with congestion value at mostZ − 2
in this cut set, thene can be inserted into the tree to
rebuild the new tree (Ty − e′ + e). The cost of re-
building the tree is bounded by the cardinality of cut
set (i.e.,O(|E|) and thus the total cost isO(m · |E|2)
for m trees. An ILP formulation employing Steiner-
cut inequalities (branch-and-cut algorithm) [17, 18] to
construct such trees was as follows:

Minimize z =
∑

e∈E
we · xe

Subject to∑
e∈δ(S)

xe ≥ 1, ∀S ⊂ V,mi ∈ S, M 6⊂ S

xe ∈ {0, 1}, ∀e ∈ E

Let a partitionP = S1, S2, S3, ..., Sk of V de-
note a Steiner partition with respect toM if eachSi

contains at least one element ofM and∆(P ) denote
the multicut associated withP , (i.e., the collection of
edges with endpoints in different members ofP ), they
extended the above formulation as the following ILP
by defining the Steiner partition inequality associated
with partitionP , partitioning recursively the solution
spaces by branching on the variables to0 or 1, and by
solving the relaxations of the following ILP formu-
lation in order to find the optimum multicast tree in
isolation instead of generating all of the constraints at
once :∑

e
∈ ∆(P ) · xe ≥ k − 1

1 ≥ xe ≥ 0, ∀e ∈ E

They further extended the above idea to partitions
of V involving more than two subsets.

3.2 The Randomized Version of Partition Al-
gorithm

A randomized algorithm contains some decision that
is based on pure chance, not the inputs to the algo-
rithm, or anything else in the environment in which
the algorithm is executed. The algorithm may deter-
mine how the result is computed. The partition prob-
lem is an NP-complete problem and solving that given
a set of integers, is there a way to divide the set into
two independent subsets such that the sums of the
numbers in each subset are equal.

Let Π = {S1, S2, ..., S|Π| denote a partition of
V , ∆(Π)) ⊆ E denote the associated multicut, the
edge weights defined as̄we = 1

|∆(Π)| if e ∈ ∆(S)
or 0, otherwise,Λk(w) ≥ 1

|∆(Π)| · tk · (sk(Π) − 1)
by using these weights, in order to improve the qual-
ity of the partitionΠ, Chen, G̈unlük, and Yener also
proposed a constructive procedure to find better par-
titions of V by merging some of the subsets in the
partition to obtain smaller partitions and looking for
a promising pair of subsetsSm and Sn with small
βmn. By using edge weightsγ defined asγmn =
βmn + u · (

∑
k∈K(Sm)

tk +
∑

k∈K(Sn)
tk) + v with u andv

being two random perturbations, they proposed a ran-
domized version of partition algorithm that was ap-
plied repeatedly starting with the same initial partition
as follows:

Step 1. LetΠ0 = S1, S2, · · · , S|V | with Si being
a singleton.

Step 2. Letλ0 be the initial best bound andi = 0.
Step 3. Repeat as long as|Πi| > 2:
Step 3.1 computeγ ’s for each neighboring subset

pair
Step 3.2 identify a pair(Sm, Sn) with the least

γmn (based on two random perturbationsu andv)
Step 3.3 mergeSm andSn to obtain a new parti-

tion Πi+1

Step 3.4 computeλi+1, updated the best bound if
necessary, and seti = i + 1

4 Discussion

The multicast congestion problems are critical to
many network applications in multimedia streamlin-
ing such as multimedia distribution, software distribu-
tion, and video-conference; groupware system; game
communities; and electronic design automation such
as routing nets around a rectangle and moat routing.
As widely known, the generalization of the problem
for finding edge disjoint paths is an NP-hard com-
binatorial problems, i.e., minimum multicast Steiner
tree problem, and also a max-SNP hard problem, i.e.,
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there is a constantε > 0 such that it is NP-hard to find
a (1 + ε) approximation.

All the approximation algorithms discussed
above have been developed based on the deep analysis
of the problems from different points of views, which
thus have been formulated as a variety of ILPs and
solved by employing different schemes. However, the
main problem with the LP-relaxation is the time re-
quired to solve the LP formulation. To improve the ef-
ficiency, it is mandatory to make better use of the mul-
ticast congestion parameters in order to obtain a sim-
plified approximation algorithm with tighter approxi-
mation bound. Finding better and fast approximation
algorithms for specific classes of multicast networks
is worth further investigation as well.
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