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Abstract: This paper considers the scheduling problem of packet transmissions in a TDM/WDM unidirectional
optical ring network. Our objective is to design a scheduling scheme for packet transmission with minimum
scheduling length satisfying a set of traffic requirements. We focus on a fairly general case in that non-uniform
traffic demands and arbitrary transmitter tuning latencies are allowed. Since the scheduling problem in TDM/WDM
ring networks is known to be NP-Complete, we formulate the problem as an Integer Linear Program (ILP) and
propose some heuristic algorithms to find feasible solutions.
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1 Introduction

Wavelength Division Multiplexing (WDM) technolo-
gies have been considered as a promising approach
to build the next generation networks. Using WDM
technique, the vast bandwidth of optical fiber can
be divided into a lot of high-speed channels. Each
channel uses a wavelength to transmit packets, in
other words, many packets can be transmitted si-
multaneously on a single optical fiber with different
wavelengths. All-to-All Personalized Communication
(AAPC) supports the most densest communications
between every source-destination pair [1, 2]. Spe-
cially, in ann-node network, AAPC consists of a to-
tal of n(n − 1) connections. These connections are
personalized because loads of different connections
can be different. Considering a Wavelength Division
Multiplexing (WDM) network, if there are sufficient
wavelengths per link and each node is equipped with
enough transmitter-receiver pairs, connections can be
built simultaneously to support AAPC. Due to the
limited number of wavelengths per link and the lim-
ited number of transceivers of each node, not all con-
nections can be established at the same time. How-
ever, Time Division Multiplexing (TDM) technique
can be applied to each wavelength [3]. The schedul-
ing problem of minimizing the transmission period in
TDM/WDM hybrid networks is NP-Complete even
for the simplest regular topology, e.g. star and ring
networks [4, 5, 6]. In order to fully utilize band-
width, several heuristic strategies have been proposed

for TDM/WDM hybrid ring networks [4, 7, 8].
Several studies on the pipelined transmission

have been conducted in [2, 3]. They assume that
each node is equipped with at least one fully tunable
transceiver and the tuning time is negligible. How-
ever, the fully tunable transceiver is expensive and
the tuning time of the components is always much
longer than the packet transmission time [9]. In this
paper, we focus on a more practical situation in which
each node is equipped with only one tunable transmit-
ter and one fixed receiver (TT-FR). Besides, the tun-
ing time of transceiver and the propagation delay of
optical fiber cannot be neglected. We formulate the
scheduling problem of packet transmission as an Inte-
ger Linear Program (ILP) and propose several heuris-
tic approaches to increase the bandwidth utilization
and shorten the scheduling length.

2 Problem Formulation
Consider a unidirectional ring that consists of a set
of nodes,N = {0, 1, · · · , n − 1}, and a set of links,
L = {0, 1, 2, · · · , n − 1}, where linki connects node
i and(i + 1) mod n in the clockwise direction. Let
Path(i, j) denote a set of links which form a clock-
wise path between nodei andj, and then the distance
dij between nodei and nodej can be determined
by that dij = (j − i + n) mod n. Each node is
equipped with one tunable transmitter and one fixed
receiver so that a node can only receive one packet
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on a fixed wavelength at the same time. We assume
that the transmission time of a packet is equal to one
time slot and both the tuning time of transceivers de-
noted asTT and the propagation delay of optical fiber
denoted asPD cannot be neglected. There areW =
{0, 1, ..., w−1}multiplexed wavelengths per link and
nodej can only receive packets on a given wavelength
wj . A traffic demand matrixR is given, each entry
rij in R represents the number of packets that will be
transmitted from nodei to nodej. Let resij(l, t) be
a binary decision variable for recording the status of
wavelength usage, i.e.,resij(l, t) = 1 if nodei trans-
mits a packet to nodej via link l with wavelengthwj

at time slott, otherwiseresij(l, t) = 0. For exam-
ple, if there is a packet transmitting from node 0 to
node 2 and the packet now is transmitted on link 1
at time slot 3, we then recordres02(1, 3) = 1. It
means the packet uses wavelengthw2 at time slot 3
via link 1. Note that the transmitting wavelength of
packets is implicit because it is assigned to the receiv-
ing wavelength of destination node. In the above ex-
ample, the destination node is node 2, and we know
that the receiving wavelength of node 2 isw2. On the
contrary, ifres02(1, 3) = 0, it means that the wave-
lengthw2 at time slot 3 via link 1 is not used by the
connection from node 0 to node 2, but may be used
by another connection. Furthermore, the binary vari-
ableusg(t) is defined for recording the utilization of
the time slott, i.e.,usg(t) = 1 if the t-th time slot of
a wavelength is in use among all wavelengths, other-
wiseusg(t) = 0.

We formulate the scheduling problem as an Inte-
ger Programming Problem (ILP) as following:

1. Transmitter Constraint:
∑
j
(resij(i, t)) ≤ 1 ∀i, t

This equation ensures that nodei can transmit at
most one packet via its clockwise linki at any
time slot t because each node on the unidirec-
tional ring has only one transmitter. The equation
also implies that there is only one wavelength can
be used by the node to transmit a packet.

2. Receiver Constraint:
∑
i
(resij(j − 1, t)) ≤ 1 ∀j, t

The equation ensures that nodej can receive at
most one packet via linkj − 1 on wavelengthwj

in any time slott, because every node has only
one receiver.

3. Flow Constraint:
∑
l

∑
t
(resij(l, t)) = rij × dij ∀i, j

The equation means that the total number of used
time slots of each connection should be equal to
rij × dij during the transmission period.

4. Link Constraint:
∑
i

∑
wj=w

(resij(l, t)) ≤ 1 ∀l, t, w

The equation means that linkl carries no more
than one packet at the same time on the same
wavelengthw ∈ W .

5. Tuning Time Constraint:

resij(i, t) +
∑

wk 6=wj

(resik(i, t + c)) ≤ 1 ∀i, j, t
andc ∈ (0 ∼ TT )

The equation ensures that nodei cannot send a
packet on different wavelength in the tuning pe-
riod. In other words, if nodei sends a packet
to nodej at time slott on wavelengthwj , then
nodei cannot transmit any packet on wavelength
wk which is different fromwj during the tuning
timeTT .

6. Propagation Delay Constraint:

resij(l, t) = resij(l + 1, t + PD) ∀i, j, l, t and
l, l + 1 ∈ Path(i, j)

The equation ensures that packets will propagate
to next link and use the same wavelength after the
amount of time slot for the propagation delay. If
the link l transmits a packet from nodei to node
j at time slott using wavelengthwj , the packet
should appear in the linkl+1 at time slott+PD
using the same wavelengthwj . This constraint
will hold for each linkl and its next linkl + 1 of
the path from nodei to nodej.

7. Time Utilization Constraints

resij(l, t) ≤ usg(t) ∀i, j, l, t
The equation ensures that if any connection uses
any link att-th time slot,usg(t) will be set to 1.
For example, ifres13(1, 0) and res21(2, 0) are
used for connection (1,3) and (2,1), respectively,
the value ofusg(0) is 1 which indicates that 0-th
time slot is in use in some wavelength on some
link. If no connection uses 0-th time slot to send
packet,usg(0) is 0.

8. Objective Function

min
∑

0≤t≤T
(usg(t) ∗ 2t)

The objective function is to minimize the over-
all transmission period as short as possible, i.e.,
to minimize the schedule length. Entries inusg
are either 0 or 1, so each2t, t ∈ T , is 0 or 1
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weighed. For any positive integerx, equation
20 + 21 + · · · + 2x−1 < 2x will hold, and we
know that the value of2x will dominate the sum-
mation of series of20 to 2x−1. In order to min-
imize the total cost, let previous time slots have
less weigh. In this way, the scheduling will use
the previous time slots as many as possible and
accomplish the purpose of finding the minimal
scheduling length.

3 Solving The ILP Directly
The above ILP can now be solved by a variety of
techniques. We implement this ILP by using the
ILOG’s optimization package, which includes AMPL
and CPLEX modules [10, 11]. We use AMPL as the
ILP modeling language and employ CPLEX as the
ILP solver. CPLEX is a computational kernel of lin-
ear programming and developed by ILOG Corpora-
tion [10]. AMPL is an algebraic modeling language
for linear and nonlinear optimization problems and
developed at Bell Lab [11].

However, we find that the above objective func-
tion is hard to find the optimal scheduling when the
problem size is large (n ≥ 10, w ≥ 2). The main rea-
son could be the computing complexity of exponen-
tial number2t in the objective function that greatly
increases the difficulty of solving ILP. In considera-
tion of this problem, we relax the time utilization con-
straint by settingusg(t) =

∑
i

∑
j

∑
l

resij(l, t) and use

min
∑
t

usg(t) ∗ t as our new objective function in-

stead.
The new objective function is to minimize the

total used time slots as less as possible. However,
usg(t) is no longer a binary variable but the summa-
tion of t-th used time slots on all wavelengths. For ex-
ample, ifres13(1, 0) andres21(2, 0) are used for con-
nection (1,3) and (2.1), respectively, then the value of
usg(0) is 2. Each entry ofusg is added by a weight of
t, t ∈ T to substitute for2t. In this way, we can find an
optimal solution up to the case ofn = 20. We find that
the obtained results of the two objective functions are
almost the same in all of our experiments. However,
when ring size increases (n ≥ 20, w ≥ 2), the prob-
lem exceeds the computational ability of our 800Mhz
PC and CPLEX is unable to find the optimal solution
after one hour’s running time even though we use the
second objective function.

4 Heuristic Algorithms
The pipelined transmission scheduling can be formu-
lated as an ILP problem. However, finding the optimal

scheduling solution by solving the ILP directly is im-
practical in the real environment. Hence, we propose
three polynomial-time heuristic algorithms in this sec-
tion to find feasible solutions more efficiently.

In a practical situation, the tuning time of
transceivers and the propagation delay of optical fiber
cannot be neglected. Our objective is to design a
packet scheduling scheme with minimum scheduling
length satisfying a set of traffic requirements. Gen-
erally, the number of wavelength per link is less than
the number of nodes (i.e.w < n) in a WDM network.
Even in a WDM ring with a fewer nodes such thatw
may be equal ton, it is not necessary that let the re-
ceiver of each node use distinct wavelength when tun-
ing time is long. If each node receives packet on dis-
tinct wavelengths and there are sufficient wavelengths
such thatw = n, transmitter of each node must tune
n − 2 times to performn − 1 packet transmissions
to support AAPC. But for a system with larger tuning
time, it is easy to see that there will be many time slots
wasted by tuning. In such condition, it seems better if
we let more than one receiver share the same wave-
length. Furthermore, this observation introduces the
concept that a node should transmit packets to a group
of nodes using the same wavelength, tune the trans-
mitter/receiver, and transmit packets in another group
of nodes using another wavelength. In this scheme,
times of wavelength tuning can be reduced and this
observation inspires us to develop the ”Same Group
First” algorithm. On the other hand, if the propaga-
tion delay of optical fiber is long, the time of longer-
distance transmissions can overlap all or part of tun-
ing and propagation time of shorter-distance pack-
ets. This also inspires us to develop the ”Longest-
Distance-First” algorithm. These heuristic algorithms
are described in the following subsection.

4.1 Longest Distance First

The basic idea of ”Longest-Distance-First” algorithm
is that each node should send a packet to the longest-
distance destination node first, and then send to the
second longest-distance node during the propagation
period of the first packet, and so on. If a node trans-
mits packet to other different nodes on different wave-
length, the tuning time should be added to scheduling
period. Due to the propagation delay, it will take more
time to complete transmission when it has longer-
distance from source node to destination node. So
the transmission time of longer-distance packet can
overlap all or part of tuning and propagation time of
shorter-distance packets.

Algorithm Longest Distance F irst :

1. For every source-destination pair, sort the trans-
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mission sequence in descending order by their
distances.

2. Assign the transmission scheduling in order and
use a greedy method, called ”Earliest-Finish-
Assignment”, to find the first available sequence
of successive unused time slots.

If a node wants to transmit a packet, it must get
a sequence of successive unused time slots. In or-
der to shorten the scheduling length, we use a greedy
method to find the first available sequence of suc-
cessive unused time slots, which is called ”Earliest-
Finish-Assignment”. This method acts as the role of
a dispatcher, which receives the scheduling request
and finds the earliest finished assignment according
to the information about the source-destination pair
and the current state of TDM/WDM channels. Since
the receiver’s wavelength is fixed, it checks the receiv-
ing wavelength if there are some successive unused
time slots and according to the direction from source
node to destination node, the dispatcher knows that it
should assign which wavelength after a node has com-
pleted its previous packet transmission and/or wave-
length tuning and is ready to transmit the next packet.
By the dispatcher, another available starting time is
replied to the source node and the path is marked to
avoid the other nodes’ usage.

The main drawback of the ”Longest-Distance-
First” algorithm is the wavelength tuning becomes
frequent. It decides the transmission queue by dis-
tance, hence each transmitter must tune to next dif-
ferent wavelength after transmitting one packet and
wavelength tuning happens frequently. If we do
not consider the tuning time or the tuning time is
small enough, the Longest-Distance-First algorithm
can work efficiently. However, the tuning time is gen-
erally large and the times of wavelength tuning will
increase when the number of receivers increases.

4.2 Same Group First

The second heuristic algorithm is named ”Same-
Group-First”. In previous discussion, we know that
decreasing the times of wavelength tuning may obtain
better performance when the tuning time needs more
time slots. We assume that all nodes in the same group
receive packets on the same wavelength. If nodei
sends a packet to nodej, then the next destination
node of nodei should belong to the same group with
nodej. In other words, the destination nodes in the
same group are transmitted by nodei first. So the to-
tal tuning time of nodei is at most(w − 1)TT .

Algorithm Same Group First :

1. For each source node, sort the transmission se-
quence of destination nodes by their group num-
bers.

2. Since each node in the same group receives pack-
ets on same wavelength. We assign the transmis-
sion scheduling for each source node by using
the ”Earliest-Finish-Assignment” method to find
the first available sequence of successive unused
time slots.

In this algorithm, the reduction of the total tun-
ing time is limited when each group consists of a
few nodes. Besides, the transmission time of longer-
distance packet cannot overlap the propagation time of
shorter-distance packets because the destination node
in same group is not sorted in descending order by
distance to source node.

4.3 Double Sort

The third heuristic algorithm is called ”Double-Sort”
which can avoid the drawbacks in the previous two
methods. This algorithm is based on two opinions:
(1) Reduce the number of wavelength tuning as many
as possible. (2) Transmit a packet to the farthest des-
tination node first.

Algorithm Double Sort :

1. For each source node, arrange its destination
nodes according to their group number.

2. All nodes in the same group are sorted in de-
scending order by the distances from their source
node.

3. All groups are sorted in descending order by the
distance between the first element of the group
and source node.

4. Assign the transmission scheduling in order and
use the ”Earliest Finish Assignment” method
to find the first available scheduling for each
source-destination pair.

Step 1 means that this algorithm preserves the
merit of Same-Group-First. Step 2 ensures that source
node will transmit to the farthest node first. The trans-
mission time for longer-distance packet can overlap
the shorter-distance packet. Step 3 means that this al-
gorithm preserves the merit of Longest-Distance-First
for the farthest group member.

5 Simulation Result
In this section, we evaluate the performance of heuris-
tic algorithms and compare it to the optimal solution.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp86-91)



Consider a unidirectional ring network where nodes
are labelled around the ring from0 to n − 1 in the
clockwise direction. Assume that nodej receives
packets on wavelengthj mod W and the minimum
propagation delay of optical fiber links is equal to a
transmission time slot, i.e.T = PD = 1. We assume
that the receivers’ wavelengths are determined previ-
ously and focus on the case of general AAPC trans-
mission such that nodei needs to transmitrij packets
to nodej and the traffic demandsrij , ∀i, j are ran-
domly generated with restriction

∑
rij = n(n − 1).

Therefore, a total ofn(n−1) packets need to be sched-
uled in the simulation environment. Our objective is
to minimize the scheduling length, i.e. the duration of
AAPC packet transmission period.

We begin by considering the tuning timeTT in
different cases ofTT = 2 and TT = 5. Fig. 1
and Fig. 2 show the schedule length whenw = 2
and the network size is increasing. The results indi-
cate that the Double-Sort algorithm finds near-optimal
solutions even if the network size and tuning time
are increasing. The optimal solutions in both case
of TT = 2 and TT = 5 are the same when the
network size is large enough. The reason is that the
tuning time can be overlapped with the time waiting
for a available wavelength channel when the num-
ber of wavelengths is much less than the number of
nodes. Due to the computing complexity, the optimal
solution cannot be found by ILP when the problem
size becomes large. Such asw ≤ 2, n ≤ 20 and
w ≤ 4, n ≤ 10, the ILP solver could not find the
optimal solution after one hour’s running time. If the
tuning time is negligible, the Longest-Distance-First
algorithm can find very satisfied solutions as shown
in Fig. 3. Because the packet transmission time to
longest node could overlap that to the shorter ones.
Except for the extreme case ofTT = 0, the Double-
Sort algorithm can also find the best solution among
those three heuristic algorithms. Note that there is
an interesting phenomenon of Double-Sorting. In the
case thatn is divisible by w, the scheduling length
found by the Double-Sort algorithm is closer to the
optimal solution than in the case thatn is not divis-
ible by w. Especially, in the case thatw ≤ 4 and
n is not divisible byw, the Double-Sort scheduling
needs more time slots than in the case thatn is larger
and divisible byw. For example, Fig. 4 shows that
the scheduling length of the Double-Sort algorithm is
66 and 54 whenn = 15 andn = 16. respectively.
This anomaly of Double-Sorting is due to the nature
of wavelength grouping. When(n mod w) = 0, each
wavelength group in transmission queues has the same
number of packets. For example whenn = 4 and
w = 2, the transmission queue of node 0 is a sequence
of (3,1)(2), nodes in parentheses mean that they use

the same wavelength to receive packets. Similarly, the
transmission queue of node 1 is (0,2)(3). There are
two elements in the first wavelength group and one in
second group. When node 0 finishes its transmissions
in the first group, node 1 does too. They will tune the
wavelength at the same time and then transmit packets
to the nodes in next wavelength group.

6 Conclusion

In this paper, we have studied the scheduling prob-
lem for AAPC transmissions in WDM/TDM ring net-
works. We applied the pipelined transmission tech-
nique to reduce the overall scheduling length and for-
mulated the scheduling problem as a 0/1 Integer Lin-
ear Programming (ILP) problem. However the time
for solving the ILP is too long in a practical situa-
tion. Hence we propose three heuristic algorithms to
find effective solutions in polynomial time. The main
idea of our algorithm includes two optimality crite-
ria. One is to reduce the times of wavelength tuning
as less as possible because the tuning time is much
longer than the transmission time. The other is to have
the packet transmitted to the farthest destination node
first so that the transmission of the latter packet can be
overlapped with the propagation delay of the previous
packet. According to the simulation results, we find
that the ”Longest-Distance-First” algorithm has better
performance when the tuning time is very small and
the ”Double-Sort” algorithm is usually good enough
when compared to the optimal solution.
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Figure 2:w = 2, TT = 5
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Figure 3:w = 4, TT = 0
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Figure 4:w = 4, TT = 10

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp86-91)


