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Abstract: The simulation of communication networks using a continuous-state, orfluid modelingapproach, has
shown to be very efficient for a wide range of performance evaluation scenarios. In this paper we present a
fluid model of theREDactive queue management algorithm forFluidSim , a simulation tool based on the fluid
paradigm. We compare the behavior and efficiency of our model against the results provided byNS, a well known
packet-based network simulator. The proposed model does captureRED’s characteristics with acceptable precision
providing good accelerations in typical network evaluation configurations.
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1 Introduction

Discrete-event simulation is the most widespread
technique for analyzing the behavior, doing perfor-
mance evaluations, or designing new communication
networks because of its flexibility and its capability
for representing virtually every possible mechanism.
Unfortunately, this technique may be extremely costly
in terms of computing power. Consider for instance
a high-speed network being traversed by millions or
billions of packets. The classical approach would rep-
resent every packet as it makes its way through the
(models of the) network elements. One way of deal-
ing with this problem consists in replacing the dis-
crete packet representation by continuous-state mod-
els (fluid models) that describe the instantaneous flow
rate as it goes from onecontainerto another. This can
lead to a significant reduction in the computational ef-
fort. Indeed, when a burst of packets is emitted (as it
often occurs), instead of handling each individual unit,
it suffices here to manage only two events: the begin-
ning of the burst and its end. This is the approach
followed in FluidSim , a discrete-event simulation
tool based on fluid models of communication network
objects [5].

A fluid model of the TCP protocol for
FluidSim was presented in [6]. Another im-
portant mechanism that was lacking in [5] (and, to the
best of our knowledge, in any other fluid simulation

framework) is the Random Early Detection (RED)
Active Queue Management (AQM) algorithm [2].
AQM mechanisms manage queue lengths by dropping
(or marking) packets when congestion is building
up, that is, before the queue is full. End-systems can
then react to such losses by reducing their packet
rate, hence avoiding severe congestion.REDintends
to avoid congestion by randomly discarding packets
based on the average queue size. End-systems can
then react to such losses by reducing their packet rate.

While many analytical fluid models ofREDhave
been proposed, the fluid approach has seldom been
used for evaluating the performance ofREDqueues
by simulation. This is somewhat surprising given the
importance of this mechanism and the interest in fluid
simulation [5, 7, 8]. In this paper we present a fluid
model of theREDalgorithm forFluidSim . Our goal
is to evaluate the behavior and performance ofRED
queues with a precision similar to that offered by the
widely usedNSpacket level simulator but taking ben-
efit of the advantages offered by the fluid approach.

The structure of the paper is as follows. We
present in section 2 the fluid model’s dynamics of
the fundamental network components defined in the
FluidSim network simulator. In section 3 we briefly
describe theREDalgorithm and our fluid representa-
tion of this mechanism is introduced in section 4. Sev-
eral examples conceived to evaluate the fidelity, effi-
ciency and potential of our proposal are the subject of
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section 5 where our results are compared against those
obtained by simulating similar scenarios withNS. Our
conclusions and some guidelines for future work close
the paper in section 6.

2 Fluid simulation

Let us consider a fluid buffer of capacityB ≤ ∞,
with constant service ratec ∈ (0,∞) and a work-
conservingFIFO service discipline. LetΛ(t) ∈
[0,∞) be the total rate of fluid being fed into the
buffer at timet ≥ 0. The volume of fluid arriving
in the interval[0, t] is given by:A(t) ,

∫ t
0 Λ(u) du.

Let Q(t) be the volume of fluid in the buffer at
time t ≥ 0. The evolution ofQ(t) is described by:

Q(t) = Q(0) +
∫ t

0
(Λ(s)− c) 11{s∈Q}ds, (1)

where, for an infinite-capacity buffer, the setQ is
given by [10]:Q =

{
s ≥ 0 |Λ(s) > c or Q(s) > 0

}
,

and for a finite-capacity buffer,Q =
{
s ≥ 0 | (Λ(s) >

c or Q(s) > 0
)

and
(
Λ(s) < c or Q(s) < B

)}
. We

are interested only in arrival processes in which every
sample pathΛ(t) is a stepwise function. Therefore,
equation (1) is reduced to:

Q(Tn+1) =min
{
B,

(
Q(Tn) + (Λ(Tn)− c)(Tn+1 − Tn)

)+}
,

(2)

whereTn denotes then-th transition epoch ofΛ(t);
we takeT0 , 0. The resulting sample pathsQ(t) are
piecewise linear, with slopėQ(t) = (Λ(t)−c) 11{t∈Q}.
Slope changes occur either at the time instants where
the buffer becomes full or empty, or at the transition
epochsTn of Λ(t). If a finite buffer is full at times
andΛ(s) > c, some of the arriving fluid will be lost.

The output rate of the buffer att ≥ 0 is:

R(t) =

{
c if Q(t) > 0 or Λ(t) > c,

Λ(t) if Q(t) = 0 andΛ(t) ≤ c.
(3)

The model described so far can be applied to the
more general case where the buffer is fed byN fluid
flows. Letλi(t) ∈ [0,∞) be the rate of thei-th flow
at time t. We denoteλλλ(t) ,

(
λ1(t), . . . , λN (t)

)
,

and we call this theinput flow vector. The total in-
put rate isΛ(t) =

∑
λi(t). Similarly, ri(t) is the

output rate related to thei-th input fluid at timet,
r(t) ,

(
r1(t), . . . , rN (t)

)
is the output flow vector

andR(t) =
∑

ri(t) is thetotal output rate.
Let τn be then-th transition epoch ofλλλ(t). Be-

cause of theFIFO service discipline, a change inλλλ(t)

at t = τn will needQ(τn)/c ≥ 0 time units to propa-
gate to the buffer output (the time needed to flow out
the Q(τn) ≥ 0 volume units already in the buffer).
Then, at timeωn , τn + Q(τn)/c, the proportion of
output components must be the same as the proportion
of input components.

The discrete-event simulation toolFluidSim , is
based on the fluid paradigm and has models of these
fluid objects. For it to evaluate fairly complex network
topologies, it also incorporates the following compo-
nents:
Sinksare destination nodes where the arriving flow is
simply absorbed and possibly some statistics are col-
lected. Multiplexersare network nodes composed of
one or more buffers. Their function is to merge the
incoming flows according to some policy, possibly to
store fluid and, as for sources and sinks, to run in some
cases algorithms implementing control protocols.
Communication linksconnect two network compo-
nents. They are unidirectional elements that introduce
a constant delayd ≥ 0 to every flow traversing them.
Switching matricesare simply a mapping between two
sets of elements. Their function is to separate the in-
coming aggregated flow vectors (demultiplexing) and
to create new flow vectors at their output(s) (multi-
plexing) according to a routing table.
Fluid moleculescan be used to compute some perfor-
mance metrics; they can also represent the behaviour
of individual entities such asTCP’s ACKpackets.

3 Random Early Detection

In general, a packet arriving to a router will be
placed on a buffer until it can be sent away. If the
input rate to a particular interface is greater than its
capacity to release packets, a queue begins to build
up in the buffer. If it gets full, arriving packets will
be discarded. This behavior, known as tail-drop, has
shown to be highly inefficient. A better way to deal
with this congestion event is by applying an Active
Queue Management policy within the buffer. The best
known and thoroughly studied AQM mechanism is
RED[2]. This algorithm avoids congestion by control-
ling the average queue sizêq and comparing it to two
thresholds,minth andmaxth. See figure 1. Inside
this region, packets are discarded1 with a probability
0 ≤ p ≤ maxp given by a linear function of the av-
erage queue size. Whilêq exceedsmaxth all arriving
packets are discarded. Keep in mind, however, that
the criteria is based on the average queue size, soRED
may accept temporal data bursts.

1 or marked as low priority if a QoS policy is in place. In this
paper we will only refer to dropped packets.
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Figure 1. REDdropping dynamics

In order to discard packets with a growing proba-
bility while the queue is building up and still be able
to absorb packet bursts,REDcomputes anexponen-
tial weighted moving averagequeue value based on
an absortion factorwq. This factor determines the
relative importance that must be given to the average
queue value (wq → 0) with respect to theinstanta-
neousmeasured queue level (wq → 1) according to
the following formula:

q̂ = (1− wq) · q̂old + wq ·Q (4)

where Q is the instantaneous queue value andq̂old is
the previous computed average. The recommended
value forwq is 0.002.

4 Implementation

It is fairly easy to implement theREDalgorithm
in a conventional discrete-event simulator (or in a real
switching node), since on the arrival of every packet,
we can compute the new value ofq̂ according to (4)
and from it, the discard probability for that particular
packet.

In the fluid paradigm, however, things are much
more complex because we have lost the packet-level
scale. Consider the case in whichΛ(u) = k > c
in [s, t] such that the queue is building up. In the
fluid simulator there would only be (in principle) two
events ats andt that correspond to the rate changes in
Λ. If we only computêq at these points, our weighted
average would not accurately reproduceRED’s behav-
ior. Since the flow rates inFluidSim can be inter-
preted in packets per second, we obtain a better es-
timation of q̂ by computing it several times in[s, t]
according to the following algorithm:

m = int((now-lastTime) ×OutRate);
while (--m)

compute (4)

wherenow is the current simulation time;lastTime
is the last event execution time andm is the number of
packets that would be served in[s, t].

For the computation of the weighted average, the
queue idle times (that is, the periods of time when the
queue is empty) have to be taken into account as well.

The discarding probability algorithm was based
on [2]. We establish first how manypacketswould
have traversed in that interval and then we apply the
probabilistic algorithm to determine whether to dis-
card or not a particular packet. In the former case, we
drop an amount of fluid equivalent to a packet. The
details can be found in [1]. The fluid to be dropped
must belong to a specific flow which is selected ac-
cording to the proportion of bandwidth each flow is
using.

Finally, we have to determine when to evaluate
the previous algorithms. Since we cannot rely on the
events produced by the flow’s dynamics, we program
a future event when we estimate (using a minimum
squares aproximation) the queue level will traverse a
certain threshold as shown in figure 2.

-
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Figure 2. Minimum squares queue estimation

5 Model evaluation

In order to validate our model, we evaluated dif-
ferent network configurations with two simulators:
FluidSim equipped with the proposed model, and
NS [9]. We have chosenNS because, given its pop-
ularity, its models have been intensively validated by
the research community [3, 4].

5.1 A singleTCPflow

We begin by studying the simple bottleneck con-
figuration (figure 3) in order to identify some of the
model’s characteristics.

The source sends packets to its destination
through a node representing the connection’s bottle-
neck and modelled by a queue of capacityB = 40
packets and service ratec = 100 packets/s. The round
trip time is RTT = 500ms. The service discipline
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Figure 3. Bottleneck model

is REDwith parametersminth = 15, maxth = 30,
Pmax = 1/50.

Figure 4 shows the evolution ofcwnd for both,
FluidSim andNS.

Figure 4. cwndevolution. One TCPflow

The long initialcwndgrowth is related to a partic-
ularity of FluidSim already reported in [6]. While
our model seems to faithfully reproduce the evolution
of cwnd, there are a few points that deserve some dis-
cussion. In particular, we can see that sometimes (see
for instance the interval[400, 500]) cwndgrows big-
ger inFluidSim . This is because the discard prob-
ability algorithm is evaluated more often inNS, thus
slightly less losses are induced in our model.

5.2 TwoTCPflows

In our second scenario, twoTCPflows share the
bottleneck router before arriving to their destinations.
The network parameters are those defined in the pre-
vious configuration. Src2 begins its flow at time
t = 100 s.

We present in figure 5 the evolution of the con-
gestion window for both,NS and FluidSim . The
plots in this figure are rather irregular. What we are
seeing isRED’s ability to break the synchronization of
TCPflows. Shortly after the second source gets acti-
vated, packets (fluid) from both flows are lost (points1
and2 show the losses for Src1 inNSandFluidSim

respectively). From that point onwards, the losses are
no longer synchronized, as can be seen in points3, 4, 5
and6.

Figure 5. cWnd evolution for the scenario
with two flows

As we have mentioned erlier, another property of
RED is that it keeps a lower queue occupation. In
order to test this behavior, we repeated the previous
experiment using an intermitent flow for Src2. It is
active in the intervals[50, 250] and [400, 600]. The
buffer sizeB was changed to 60 packets. The curves
for Q andq̂ obtained with and withoutREDare respec-
tively shown in figures 6 and 7. The mean queue occu-
pation measured withREDwas around18.20 packets,
which is consistent with the fact thatminth = 15 and
maxth = 30. When we turned offRED, the mean
occupation grew up to43.09 packets.

Figure 6. Q and q̂ levels with no RED
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Figure 7. Q and q̂ levels with REDactivated

5.3 Efficiency

Besides the validity of the results, it is important
to compare the efficiency of the fluid model with re-
spect toNS. The efficiency measures we have selected
are thegain and thespeed-up, formalised as follows.
Let us consider a modelM to be analysed in the time
interval [0, T ]. We define the simulator’sevent gen-
eration rateξ as the number of executed events while
studyingM over [0, T ], divided byT . We define the
gain G of FluidSim (with respect toNS) as the ra-
tio of the event generation rate in both simulators. The
advantage of this measure is that it does not depend on
the internal characteristics of the simulator (e.g. the
type of scheduler). In this sense, it quantifies the effi-
ciency of the fluid paradigm.

Thespeed-upS is the ratio between the execution
time ofNSand that ofFluidSim when executingM
over [0, T ]. While this measure is influenced by each
simulator’s internal details, it is nonetheless relevant
because it is the one directly perceived by the users.

The experiments reported below were carried out
on an Intel Pentium660MHz processor with 256
MB RAM running Linux Fedora v3. We ran the sim-
ulations several times; the execution times indicated
are simply the averages of the real time observed2.

Tables 1 and 2 resume the results obtained when
simulating the single connection topology shown in
figure 3.

We confirm that the fluid model generates far less
events than the packet-level approach, so we obtain in-

2 Our main objective is to estimate the model’s feasibility
rather that producing very accurate results; therefore, the results
presented here should only give a general idea of the accelerations
the fluid paradigm could offer.

Simulation Execution time [s] No. of events (×103)
time NS FluidSim NS FluidSim
600 3.095 0.119 205.32 6.475
1000 4.553 0.173 343.21 10.753
2000 8.992 0.305 726.24 21.447
5000 22.156 0.694 1852.47 53.657
10000 45.959 1.341 3766.07 107.307
15000 66.555 1.990 5623.23 161.102
20000 88.469 2.632 7503.22 214.666

Table 1. Performance values for the single
TCPconnection topology

Simulation
time

ξ NS ξ FluidSim S G
600 342.20 10.79 26.01 31.71
1000 343.21 10.75 26.32 31.92
2000 363.12 10.72 29.48 33.86
5000 370.49 10.73 31.93 34.52
10000 376.61 10.73 34.27 35.10
15000 374.88 10.74 33.44 34.90
20000 375.16 10.73 33.61 34.95

Table 2. Efficiency obtained for the single
TCPconnection topology

teresting gains withFluidSim . The speed-up com-
puted is also no negligible even though we have not
optimised our implementation. It grows with the sim-
ulation time since the advantages of the fluid paradigm
are cumulative in this topology.

The efficiency data obtained for the two connec-
tions topology are presented in table 3.

Simulation
time

ξ NS ξ FluidSim S G
600 403.44 27.90 22.53 14.46
1000 412.86 28.36 15.89 14.56
2000 423.14 29.20 16.85 14.49
5000 427.48 29.50 17.82 14.49
10000 428.59 29.83 16.67 14.37
15000 428.85 29.91 15.51 14.34
20000 429.23 29.83 17.05 14.39

Table 3. Efficiency obtained for the topology
with two TCPconnections

We still observe good performance measures and
an order of magnitude acceleration. However, if we
compare this data against that obtained for the sin-
gle connection, we can do two interesting observa-
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tions. Firstly, the event execution rate has augmented
much more inFluidSim . This is because the inter-
actions between the connection’s flows induce several
rate changes that are traduced in supplementary events
in the fluid paradigm. InNSof course there are more
events since there are more packets, but the execution
rate growth is less important. Secondly, the speed-up
obtained is now decreasing with the simulation time.
This is an indication that the flow rate change related
events are far more complex to process than those re-
lated with the packet treatment.

6 Conclusions

In this paper we have introduced a model of the
REDalgorithm for the object library ofFluidSim , a
fluid based discrete-event simulator. We evaluated the
fidelity of our model and the efficiency of the fluid
paradigm by comparing similar topologies in both,
FluidSim andNS. When designing the model, we
have paid special care on its fidelity. The results pre-
sented show that this goal has indeed been achieved.

With regards to the efficiency, we obtained impor-
tant and promising accelerations in the simple topolo-
gies evaluated. However, we have confirmed that
these results depend heavily on the complexity of the
topology, in particular due to the interactions between
the different flows.

While further experiments most be done in or-
der to delimit the model’s (and the fluid paradigm’s)
advantages and limitations, we would prefer to do
so after refining the model. To be more explicit in
this point, the ideal values for some parameters, like
the periodicity with which futureREDrelated events
should be programmed, have not been deeply evalu-
ated.
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