
Automatic Digital Modulation Identification in Dispersive Channels 
 

1ATAOLLAH EBRAHIMZADEH, 2SEYED ALIREZA SEYEDIN 
Department of Electrical and Computer Engineering 

1, 2 Ferdowsi University of Mashad, 1Noushirvani Institute of Technology 
IRAN 

  
 
 
Abstract: - Automatic modulation type identification (AMTI) has seen increasing demand for both military and 
civilian, nowadays. Most of previous methods have been proposed on classification of modulations in additive 
white Gaussian noise (AWGN) channels. However in real world scenarios, communication channels suffer 
from dispersion (fading). This paper proposes a novel automatic digital modulation types identifier (ADMTI) in 
dispersive environment. In the ADMTI’s structure, undesired effects of channel are mitigated by an equalizer. 
Higher order cumulants and moments (up to eighth) are used as features and classification is performed by a 
multiclass SVM-based classifier. Simulation results show that ADMTI is able to identify different types of 
modulations (e.g. QAM64, V.29, and ASK8) with high accuracy even at low SNRs.  
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1 Introduction 
Automatic modulation type identifier is a system 
that recognizes the modulation type of received sig-
nal automatically, and has many applications such 
as electronic surveillance, threat evaluation, signal 
confirmation, spectrum management, software ra-
dio, etc. Whilst, early researches were concentrated 
on analog modulations, the recent contributions in 
the subject focus more on digital communications 
due to increasing usage of digital modulations in 
many novel applications.  

Generally, AMTI methods can be categorized in 
two main categories: decision theoretic (DT) and 
pattern recognition (PR). DT approaches use prob-
abilistic and hypothesis testing arguments to formu-
late the recognition problem and to obtain the clas-
sification rule [1-11]. The major drawbacks of 
these approaches are their very high computational 
complexity, difficulty within the implementation 
and lack of robustness to model mismatch. PR ap-
proaches, however, do not need such careful treat-
ment. PR approaches mainly divided into two sub-
systems: the feature extraction subsystem and the 
recognition subsystem. The former subsystem is re-
sponsible for extracting prominent characteristics 
from received signal which are called features and 
the latter, classifier, is employed to indicate the 
membership of modulation type [12-26]. PR ap-
proaches are simple to implement; however, selec-
tions of two subsystems are serious problems.  

Most of previous methods have been proposed 
on classification of modulations in AWGNchannels 
[1-8], [12-24]. However, in real world communica-

tion channels, such as wireless communication envi-
ronments, suffer from dispersion (fading) and most 
of recognizers that are designed for AWGN do not 
preserve their performance under impairment condi-
tions. Research on AMTI, over fading channels has 
been only performed in a few works [9-11], [25-26]. 
In [9-10], classification between PSK2 and PSK4 in 
a flat Rayleigh fading are proposed. In [11] a quasi-
optimal solution based on the approximation of the 
log-likelihood function is proposed. In [25], the 
modulations were identified by applying the nearest 
neighbor rule in a two-dimensional feature space. In 
[26], an identifier using neural network based on 
combinations of different order of moments is pro-
posed to discriminate digital modulations in multi-
path fading. 

This paper proposes a novel ADMTI in time dis-
persion channels.Figure1 shows the scheme of 
ADMTI. In this structure, Pre-processing module 
performs: rejection of noise outside of signal band-
width, normalization, carrier frequency estimation, 
recovery of complex envelope, etc. Equalization 
module mitigates the channel that is presented in 
section2. Section 3 describes, feature extraction 
module. Section 4, presents the classifier. In section 
5, some experimental results are shown for consid-
ered digital modulation set {PSK2, PSK4, PSK8, 
ASK8, QAM32, V29, Star-QAM8, and QAM64}. 
 Finally in section 6 conclusions are presented. 
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Figure1: Structure of ADMTI 

 
 
2 Channel equalization  
In digital communications, according to the changes 
in the message frequency, message amplitude, mes-
sage phase, or changes in amplitude and phase, we 
have four main digital modulation techniques, fre-
quency shift keying (FSK), amplitude shift keying 
(ASK), phase shift keying (PSK) and quadrature 
amplitude modulation (QAM), respectively. Most of 
them are applied in M-ary form [27]. In real world 
situations the transmission channel is a critical fac-
tor that may cause unrecoverable distortions on the 
signal, especially in higher order digital modula-
tions, where the effect of channel may corrupt the 
signal constellation. In order to mitigate the dis-
persion effects of the propagation channel, an 
equalization stage is employed in the receiver. In 
AMTI applications, the training sequence that is 
needed for adjusting equalizer coefficients is not 
available. Hence, the equalization must be done 
blindly. When the type of modulation is unknown, 
usually, the Fractionally Spaced Equalizer- Constant 
Modulus Algorithm (FSE-CMA) is one of the 
commonly used blind equalization algorithms, 
which are designed to undo the channel effect with-
out any knowledge of the channel itself [28]. The 
FSE-CMA is the integration of two different parts: 
the constant modulus algorithms (CMA) and the 
fractional spaced equalizer (FSE). 

The constant modulus algorithm (CMA) is a sto-
chastic gradient algorithm, designed to force the 
equalizer weight to keep a constant envelop on the 
received signals. Thus, it is designed for problems 
where the signal of interest has a constant envelope 
property. However, extensive simulations have 
shown that it can still be used in amplitude-phase 
modulation types, but the success of equalization is 
decreased with increasing of order. As a result, the 
CMA is expected to have better performance for 
FSK and PSK rather than QAM types. The CMA 
cost function is given by: 

}))({()( 22 γ−= kyEkJ                                        (1) 
where )(ky  is the equalizer output and γ called the 
dispersion constant defined by (2). 
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where 0,4M  and 0,2M are fourth and second order 
moment respectively. The cost function )(kJ is 
minimized iteratively using a gradient based algo-
rithm with update equation. 

In any standard CMA equalization system, the 
coefficient taps are baud-spaced. However, it is of-
ten desired to use an equalizer with taps spaced at a 
fraction of the data symbol period T. This configura-
tion gives the extra degrees of freedom to perform 
additional filtering. Such a scheme is called frac-
tional spaced equalization (FSE).  

We assume that the received signal is:  
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where )(th  is the channel impulse response, )(ks the 
sequence of information and )(tυ is AWGN. The 
response )(th is assumed to be of finite length. Frac-
tionally spaced channel output resulting from P 
times oversampling with respect to symbol rate may 
be written as: 
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An equivalent representation may be formed using 
P-channel parallel filter bank model. Then the out-
put of the ith sub-channel )(khi  is given by: 

∑
∞
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Now, we assume an equalizer )(kwi which is 
used in cascade with each subchannel )(khi . The 
equalizer coefficients (taps) are adjusted using FSE-
CMA algorithm: 
 22 ))()(()()()1( γζ −+=+ ∗ kykykxkwkw    (6) 
where ζ is the step size parameter and: 
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and superscript denotes the subchannel, i.e., frac-
tionally sampled data are organized on subchannel 
basis.  It should be mentioned because of fractional 
sampling in channel equalization stage, the symbol 
rate needs to be known or to be estimated prior to 
choosing the sampling rate  
 
 
3 Features extraction 
In AMTI it is most important to find a set of features 
which could be used to discriminate the members of 
considered modulation set. Among the different 
types of features that we have evaluated and ex-
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perimented, higher order moments and higher order 
cumulants up to eight, produced the most effective 
features. These features provide a good way to de-
scribe the shape of the constellation. Following sub-
sections, briefly describe these features. 
 
3.1   Moments (Mom.s)  
Probability distribution moments are a generaliza-
tion of concept of the expected value, and can be 
used to define the characteristics of a probability 
density function. Recall that the general expression 

thi  moment of random variable is given by [29]: 
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where µ  is the mean of the random variable. The 
definition for the thi moment for a finite length dis-
crete signal is given by: 
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where N  is the data length. In this study signals are 
assumed to be zero mean. Thus Eq. (9) becomes: 
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Next, the auto-moment of the random variable may 
be defined as follows: 

])([ qqp
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where p called moment order and ∗s  stands for 
complex conjugation. Assume a zero-mean discrete 
signal sequence of the form  kkk jbas += . Using 
(11), different orders of moment derived, e.g.: 
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3.2  Cumulants (Cum.s) 
Consider a scalar zero mean random variable s with 
characteristic function: 

{ }jtseEtf =)(ˆ                                                        (13) 
 Expanding the logarithm of the characteristic func-
tion as a Taylor series, one obtains: 
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the constants ik , in (14), called the cumulants. The 

symbolism for thp order of cumulant is similar to 

the thp  order moment. More specially: 
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For example: 
),,,,,,,(81

∗= ssssssssCumC                               (16)                                                                                                                  

It can be computed relation between moments and 
cumulants.  
 
3.3 Relation between Cum.s and Mom.s 
The thn order cumulant is a function of the moments 
of orders up to including n . Moments may be ex-
pressed in terms of cumulants as: 

[ ] { }[ ] { }[ ]
11

...,..,1 vjj
v

vjjn sumsCumssM
∈

∀
∈∑=          (17) 

where the summation index is over all partitions 
),...,( 1 qvvv =  for the set of indexes ),...,2,1( n , and q  

is the number of elements in a given partition. Cu-
mulants may be also be derived in terms of mo-
ments. The  thn  order cumulant of a discrete signal 

)(ns  is given by: 
[ ] ][..][)!1()1(,..,

1

1
1 ∏∑ ∏

∈∀ ∈

− −−=
qvj

j
v vj

j
q

n sEsEqssCum (18) 

where the summation is being performed on all par-
titions ),...,( 1 qvvv =  for the set of indices 

),...,2,1( n .For example:                                        

 3
2121416363 69 MMMMC −−=                            (19)                   
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40
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Table1 shows chosen features for considered set 
(theoretical values under the constraint of unit vari-
ance). In this table, for simplifying, we substitute 
the modulations PSK2, PSK4, PSK8, ASK8, 
QAM32, V29, Star-QAM8 and QAM64 with P1, P2, 
P3, P4, P5, P6, P7 and P8 respectively. 
 

Table1: Chosen features 
 P1 P2 P3 P4 P5 P6 P7 P8 
M41 1 0 0 1.76 0 0 0 0 
M61 1 -1 0 3.62 -.380 8.667 2.92 -1.30 
C63 16 4 4 7.19 2.11 -4.43 .160 2.11 
M84 1 1 1 7.92 2.89 28.75 5.25 3.96 
C80 -244 34 1 9.27 -1.99 -198 -88.9 -11.5 
C82 -244 -46 0 9.27 -8.41 74.04 63.31 -27.1 
C83 -244 0 0 9.27 0 0 0 0 

 
 
4 Support Vectors Machine (SVM) 
Support Vector Machine (SVM) is a supervised ma-
chine learning technique that can be applied for both 
binary and multi-class classification [30]. The SVM 
is based on structural risk minimization (SRM) prin-
ciple that gives it to have highly generalization abil-
ity comparison other approaches (e.g. neural net-
works, etc.[31].  
 
4.1 Binary SVM 
The binary SVM performs classification tasks by 
constructing optimal separating hyperplanes (OSH). 
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OSH maximizes the margin between the two nearest 
data points belonging to two separate classes. The 
idea of SVM can be expressed as follows. 

Suppose the training set, 
}1,1{,,,....,2,1),,( +−∈∈= yRxliyx d

ii  can be sepa-
rated by the hyperplane 0=+ bxw T , where wr  is 
weight vector and b is bias. If this hyperplane 
maximize the margin, then the following inequality 
is valid for all input data:  
 liby ii

T
i ,...,2,1 allfor ,1)( =≥+ xxw                   (21)   

The margin of the hyper-plane is wr/2 , thus, the 
problem is:  maximizing the margin by minimizing 
of 2w subject to (21), that is a convex quadratic 
programming (QP) problem that Lagrange multipli-
ers are used to solve it: 
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where lii ,...,1, =λ  are the Lagrange multipliers 
( 0≥iλ ).The solution to this QP problem is given 
by minimizing PL with respect to w and b . After dif-
ferentiating PL  with respect to w  and b and setting 
the derivatives equal to 0, yields: 

∑
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It can obtain the dual variables Lagrangian by im-
posing the Karush-Kuhn-Tucker (KKT) conditions: 
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To find the OSH, it must maximize dL  under the 

constraints of 0
1

=∑
=

i

l

i
i yλ , and 0≥iλ .Those training 

points for which the equality in (21) holds are called 
support vectors (SV) that can satisfy 0fiλ . The 
optimal bias is given by: 

i
T

iyb xw** −=                                                     (25)  
for any support vector ix . 

For input data with a high noise level, SVM uses 
soft margins can be expressed as follows with the 
introduction of the non-negative slack vari-
ables lii ,...,1, =ξ : 

liforbxwy ii
T
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To obtain the OSH, it should be minimizing the 
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where C  is regularization constant that controls 
how heavily training errors are penalized.                           
In the nonlinearly cases, the SVM map the training 

points, nonlinearly, to a high-dimensional feature 
space using kernel function ),( ji xxK rr , where linear 
separation may be possible. The famous kernel 
functions are linear, polynomial, radial basis func-
tion (RBF), and sigmoid. Having selected a kernel 
function, the QP problem is: 
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After training, the following, the decision function, 
becomes:   
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4.2 Multiclass SVM-based classifier 
In this research, we have derived at a novel, simple 
and effective solution for combining binary SVMs 
to construct a multi-class classifier. In our algo-
rithm, we use an approach similar to the one re-
ported in reported in [32]. Our approach can be de-
scribed as follows:  
Let },..,2,1:{ NiPi = be N  classesof signals.We 
construct N classifiers },..,2,1:{ Nifi = and each 
classifier is trained by the method of one-c1ass-
versus-the-rest; that is, the classifier if  is trained for 

iP  versus the rest of the classes. Then in the signal 
classification phase, the classifiers perform accord-
ing to the following decision rule: 

}1,...,1;0)(max{ −==⇒ NkxffifPx kii f        (29) 

 where the function )(xf k  provides the distance of 
x  to the decision surfaces. 
 
5 Experimental results  
In simulations we have used the channel model 
that has been introduced in [33]. ADMI was tested 
under conditions: typical urban propagation envi-
ronment, mobile speed =85 km/h. SNR levels are 
considered 0-20 dB. The symbol rate is assumed 
to be known (or estimated). While classifying us-
ing our multi-class SVM-based, we used both Gaus-
sian RBF (GRBF) and polynomial (POLY) kernel 
functions and obtained a little bit better performance 
in the case of POLY; however, the computational 
speed of classification was faster in the case of 
GRBF. Hence, we used GRBF in our experiments 
with )2/1exp(),( 2

ii xxxxK rr
−×−= .Tables 2-4 

show confusion matrix for three selected SNR lev-
els, 2dB, 8dB and 17dB. As we see, the results im-
ply how ADMTI can identify modulation type with 
the high accuracy in dispersive channels even at low 
SNR. This is due the two facts: chosen novel fea-
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tures and classifier. The chosen features, have 
highly effective properties in signal representation  
that enable the classifier to separate modulation set 
with high accuracy, on the other hand, the SVMs act  
excellent on non-separable data (low SNR) .  
 

Table2: Confusion matrix at SNR=2dB (%) 
 P1 P2 P3 P4 P5 P6 P7 P8 
P1 91        
P2  84       
P3   78      
P4    86     
P5     76    
P6      78   
P7       75  
P8        71 

Table3: Confusion matrix at SNR=8dB (%) 
 P1 P2 P3 P4 P5 P6 P7 P8 
P1 100        
P2  96       
P3   93      
P4    98     
P5     90    
P6      91   
P7       88  
P8        87 

Table4: Confusion matrix at SNR=17dB (%) 
 P1 P2 P3 P4 P5 P6 P7 P8 
P1 100        
P2  100       
P3   100      
P4    100     
P5     97    
P6      98   
P7       96  
P8        94 

 
As mentioned in section2, CMA shows good re-

sults for PSK types, but for QAM types, when the 
number of states increases (higher order) and/or the 
SNR level decreases, its performance degrades. 
However, simulations imply good results for these 
types of modulations. The reason for this property 
should be looked for in chosen features and classi-
fier that cover the weakness of equalizer.  

 For comparison the performance of SVM with 
other classifier, we consider a radial basis function 
neural network (RBF-NN) [34]. Table5, show the 
performance of RBF-NN for similar situation in 
SNR=2dB (low SNR). It is found in low SNRs, the 
RBF-NN shows poor performance. The reason 
maybe that, in low SNRs, the construction of neural 
network is not proper. It should be mentioned, 
though, the success rate of RBF-based system is 
lower than SVM- based system, but it is higher than 
a system that uses other features and RBF-NN as a 

classifier. Table6 shows the performance of a sys-
tem that utilizes RBF-NN and features in [19].  
 

Table5: Confusion matrix at SNR=2dB for RBF-NN 
 P1 P2 P3 P4 P5 P6 P7 P8 
P1 69        
P2  64       
P3   61      
P4    66     
P5     55    
P6      56   
P7       51  
P8        49 

Table6: SNR=2dB for RBF-NN and features in [19] (%) 
 P1 P2 P3 P4 P5 P6 P7 P8 
P1 51        
P2  35       
P3   33      
P4    35     
P5     29    
P6      21   
P7       17  
P8        13 

 
 
6 Conclusion 
AMTI is an important issue in communication intel-
ligence and electronic support measure systems. In 
this paper, we present ADMTI to identify digital 
modulations types in dispersive channels. ADMTI 
uses higher order moments and cumulants up to 
eight as features and a multiclass SVM-based classi-
fier. Simulation results show ADMTI is able to dis-
criminate different types of modulations with high 
accuracy even at low SNR. 
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