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Abstract: - In this study, coupling between two cores in a specific photonic crystal fiber (PCF) structure is investigated 
via Localized Basis Function (LBF) method. The PCF structure considered here consists of an unbounded periodic 
cladding and two high index core regions. In the LBF method, a guided mode localized in the core regions and 
periodic variation of the refractive index in the transverse domain are decomposed by using Hermite-Gaussian type 
Localized Basis Functions and Fourier type expansions. Simulation results are presented which demonstrate that the 
coupling between two cores in the PCF structure can be obtained in accurate and numerically efficient manner 
utilizing the LBF approach proposed in this work.  
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1   Introduction 
In recent years, there has been an increasing interest in 
photonic crystal fibers (PCF’s). PCF’s are single 
material optical fibers with a periodic array of air holes 
made in their cross-sections running along the entire 
length of the fiber. The large and controllable periodic 
variations of the refractive index in the transverse 
domain offered by these fibers opens up exciting new 
opportunities for the control and guidance of light [1, 2, 
3].   
     In a PCF, light can be guided using either one of two 
quite different mechanisms: Total Internal Reflection 
(TIR) mechanism and Photonic Band Gap (PBG) effect 
[1]. TIR occurs when the refractive index of the core is 
higher than that of the cladding surrounding it. TIR is a 
well-known mechanism and has widely been used in 
describing propagation in optical waveguides. Within the 
last decade there has been an increasing interest in a 
physical mechanism known as PBG, which provides 
some new opportunities in confining and controlling 
light in fibers. PBG can be obtained by introducing a 
periodic perturbation into the cross-section of the fiber. 
The main property characterizing the PBG structures is 
the occurrence of pass and stop bands in the frequency 
spectrum. 
     In this study, coupling between the cores in a specific 
photonic crystal fiber (PCF) structure depicted in Fig.1 is 
investigated via Localized Basis Function (LBF) 
method. The PCF structure considered here, consists of 
an   unbounded cladding region formed by introducing 

circular air perforations in a lossless dielectric   
conforming to a periodic pattern of hexagonal symmetry 
except for  “defect” regions obtained by removing two of 
the air holes, as seen from the Fig.1. Guided mode 
energy is concentrated in the vicinity of these defects, 
which act as the (high-index) core regions for the PCF. 
Hermite-Gaussian type Localized Basis Functions (LBF) 
[4, 5, 6] are utilized together with Fourier type 
expansions in representing the localized guided modal 
fields and the periodic variation of the refractive index in 
the transverse domain. Because the refractive indices of 
the defects are higher than the “effective index” of the 
cladding [7], the guidance of the electromagnetic field in 
the PCF structure can also be thought to result due to 
TIR mechanism. Numerical results are given which 
demonstrate the applicability of the presented method. 
 
 
 
2   Method 
In the LBF method considered in this paper, expansions 
based on Hermite-Gaussian (HG) functions are used for 
representing the fields within the core (defect) regions 
whereas a mixed representation utilizing HG functions 
and 2-D Fourier series are used to model the periodic 
refractive index variation together with the defect (core) 
regions. These expansions reduce the problem of 
determining propagation characteristics of the PCF to a 
matrix eigenvalue problem. 
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Fig.1 The periodic cladding and two core regions.  
 
 
 
     In our work, scalar wave approximation is utilized. 
This approximation is valid when the ratio of the air hole 
diameter (d) to the hole separation (Λ) is small (d/Λ<0.4) 
[5], as considered in this work. A modal electric field 
component of the coupled structure is expanded as 
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where N is the number of terms retained in the expansion 
and ψi stands for orthonormal basis of Hermite-Gaussian 
functions: 
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Here Hi is the ith-order Hermite polynomial. w in (2) 
which represents the characteristic width of the basis set 
is taken to be Λ/2 where Λ is the separation between the 
holes. 
     The squared expression of the refractive index in the 
transverse domain is separated into two parts: 
corresponding to the periodic lattice of holes which may 
be described using a Fourier series, and that 
corresponding to the defects (i.e., the cores) which will 
again be described using localized orthonormal Hermite-
Gaussian functions. We thus write, 
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where N1 and N2 terms are retained in expansions for the 
defect regions and the periodic cladding region holes, 
respectively. lx and ly are the periods along the x and the 
y axis, which for the structure shown in Fig.2  are 
determined as lx=Λ and ly=1.732Λ, respectively. 
     ψi in (3) has the same functional form as given by (2) 
however, w is now replaced by w=0.26d (d: the air hole 
diameter), i.e. the basis sets used in representing modal 
fields and n2(x, y) within the defect regions are defined 
with different characteristic widths. 
 
 
 
     Expansion coefficients Dij are evaluated via inner 
products defined over the unit cell (UC), 
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Fig.2 A periodic unit cell of the unbounded periodic 

cladding structure. 
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     On the other hand Cij coefficients in (3) are evaluated 
via inner products defined over one of the defect regions 
(DR), 
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     The representations for the scalar electric field 
component and the squared expression of the refractive 
index in the transverse domain given in (1) and (3), 
respectively, are substituted into the scalar wave 
equation. 
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where 0kn β=  denotes the modal index. 
 
Next, each term of the resulting expression is multiplied 
by ψk(x)ψl(y) and integrated over the entire transverse 
(x, y) plane. Making use of the orthonormality of the 
Hermite-Gaussian basis functions, the problem is then 
reduced to matrix form: 
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Here V denotes the vector (N2×1) of expansion 
coefficients aij, and the elements Mklij and M1klij of 
N2×N2 matrixes M and M1 are obtained respectively as 
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M1klij  = I(3)
klij                                                        (11) 
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3   Numerical Results 
The specific PCF structure of hexagonal symmetry 
considered in this work is shown in Fig.1. In all 
numerical calculations presented here we assumed 
d/Λ=0.4 and na=1, ns=1.45, corresponding to the 
refractive indices of air and silica substrate respectively. 
     Fig.3 demonstrates that the convergence properties of 
the representation given in (3) are fairly good and the 
refractive index profile can be represented quite 
accurately by using reasonable number of terms in the 
expansions. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Variation of index profile along x profile obtained 
from (3) using N1=10, N2=100. 

 
 
     Utilizing same values of d/Λ, na, ns in all 
computations, we have investigated the dependence on 
normalized wavelength Λ/λ of the coupling between the 
two defect regions resulting from the removal of air 
holes centered at x=±Λ and y=0 (see Fig.1). 
     The variation with x/w of the normalized amplitude 
of the transverse electric field of the dominant even 
symmetric mode of the coupled structure is depicted in 
Fig.4 for Λ/λ=5.11. This value of Λ/λ corresponds to a 
separation of about 10λ between the centers of the two 
defect regions. Hence, it is expected that at this rather 
weak coupling condition the field variation of the 
composite system will be almost identical to the 
superposition of the fields of individual PC fibers.   
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Fig.4 The variation of the normalized modal field 
amplitude with x/w. ∧/λ=5.11, 

 
 
 
Indeed the obtained mode index completely agrees with 
that obtained for the single defect case. It should 
however be kept in mind that the coupled system does, 
of course, support also an odd symmetric mode, which 
in this case corresponds to the same mode index and its 
variation can be obtained via simply inverting the field 
amplitudes shown in Fig.4 in regions ± x. 
      On the other hand, as ∧/λ decreases the electrical 
distance between the two defect regions becomes 
smaller and the modal indices of the even en  and odd 

on  symmetric modes of the structure begin to differ 
from the modal index n obtained for the single defect 
case.  In Fig.5 we have plotted the variation with x/w of 
the even symmetric dominant mode for ∧/λ=0.9 which 
clearly indicates the overlap between the fields 
supported by individual defect regions.    
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
Fig.5 The variation of the normalized modal field 

amplitude with x/w. ∧/λ=0.92,     
 
  
 
    In Fig.6 the variation of modal indices of the 
dominant even symmetric and odd symmetric modes of 
the two core photonic crystal fiber with ∧/λ is given 

together with the modal index of a single core (defect) 
fiber. It is well known that in the weak coupling limit 
standard Coupled Mode Theory (CMT) yields a good 
approximation for estimating the splitting between en  
and on . In case when two waveguides are identical, 
CMT predicts that oe nn ,  and n  are related as [8] 
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Our numerical results indicate that the calculated values 
of modal indices are in good agreement with (13) and 
hence provides a validation for the applicability of the 
scalar wave approximation in the parameter regime 
consider in this treatment.    
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 The variation of indices of the dominant modes in 

a double core PCF and modal index of a single 
core PCF with ∧/λ. 

 
 
 
4   Conclusion 
In this study, the coupling between the cores in the 
specific photonic crystal fiber (PCF) structure is 
investigated via Localized Basis Function (LBF) 
method. Hermite-Gaussian type Localized Basis 
Functions (LBF’s) [4, 5, 6] are utilized together with 
Fourier type expansions in representing the localized 
guided modal field and the periodic variation of the 
refractive index in the transverse domain. We have 
presented numerical results to illustrate the effectiveness 
of the presented approach in addressing the coupling 
between the two defect regions (double core) in a PCF. It 
is also shown that scalar wave approximation provides 
sufficient accuracy for treating coupling in the two core 
PCF in the parameter regime considered. However as 
noted in the literature this approximation breaks down 
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when d/∧ is increased, corresponding to larger air holes. 
In this case the presented approach can also be used with 
little modification [6] to obtain full wave solutions for 
the vector fields of the dominant mode in PCF.  
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