
 

A Predictive Control Approach For Nonlinear Systems 
MALIK F. ALAMAIREH, MOHAMMAD R. HASSAN 

Department of Computer Science 
Amman University  

Assalt 19112 P. O. Box 5043 
JORDAN 

 
 

Abstract: - The theory of artificial neural networks has been successfully applied in control systems. In this 
paper, a neural-network-based controller structure is proposed and applied to an unknown non-linear system 
that is affected by unmeasured disturbances. The controller structure includes three neural-network modules: 
the disturbance estimator, the system model, and the optimizer. The controller provides control actions 
according to the estimated values of unmeasured disturbances, and predictions of the future behavior of the 
system. The overall performance of the controller is improved continuously during its work so that a near 
disturbance rejection control is obtained. This strategy allows the controller to adapt to the behavior of a 
specific system and to any changes in it during the control process. 
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1. Introduction 
Neural-network-based control systems have a great 
scientific interest, as they are being able to 
approximate any non-linear function. Most control 
systems exhibit certain types of nonlinearities [1]. 
Neural Networks are able to estimate various 
system functions especially for unknown systems 
or systems that have complex mathematic 
functions. It worth mentioning that there are many 
works aimed to develop control systems based on 
neural networks [1,2,3]. 

The widely used structures of neural-network-
based control systems use neural networks to 
approximate the system function and to apply a 
feedback control based on the results of estimation 
of the values of the system output. A neural 
network controller is continuously training in 
parallel with the work of the whole system to 
minimize the difference between the predicted and 
actual output of the system in order to closely 
approximate the system function. 

In this paper, we examine a neural network 
adaptive control model and apply it to the problem 
of control of physiological systems (PS). PSs are 
very complex, and they are characterized by 
unstable response to changes in their input 
parameters. These systems include the control of 
blood pressure, blood-glucose concentration, and 
others. PSs are also complicated by the presence of 
unmeasured disturbances. 

There were many approaches for the control of 
PSs, which has been attempted. These control 
models are related to the PS processes that require 
a stable value of a PS parameter. The PS self-

control may be lost partially or completely because 
of specific diseases. If the self-control of a PS is 
lost, it must be utilized by an external control 
mechanism that must be very accurate. Poor 
control of these parameters may lead to many 
complications and risks of life [3,4]. 

One of the most important control approaches 
is the one based on the mathematical modeling of 
PS dynamics [5,6,7]. However, this approach 
requires a complete understanding of all 
physiological processes that affect the controlled 
object. This task usually leads to complex 
unsolved mathematical equations. Other 
approaches use probabilistic models based on the 
probability distribution of the control system 
parameters [9,13]. These systems are very 
sensitive to the incompleteness of available 
information. 

The basic model for the control of PS is defined 
in terms of the classical cybernetic closed loop 
[1,8,11]. However, the inclusion of a delay in 
system response, an unmeasured disturbance, and 
individual PS variations of response amount and 
time much complicates the problem. This 
motivates to adopt an adaptive control approach 
with an ability to predict changes in the system 
state depending on the estimation of unmeasured 
disturbances and an approximation system model. 
The control strategy based on a prediction of the 
values of unmeasured disturbances is called a 
predictive control strategy. 

 
 

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp150-155)



2. The Neural Network Controller 
The main common neural network based controller 
uses a neural network to predict the system output 
(Y’(t+1)) in order to determine a suitable control 
action for the system [1]. Later on, the controller 
finds the error between the predicted (1) and the 
measured values of the system output (δy) to train 
the neural network to minimize this error (Fig. 1). 

 
Fig. 1. A NEURAL NETWORK 

CONTROLLER 
 

Y’(t+∆t) = g(Y(t),Ua(t-∆t),X(t), ∆t) (1) 
 

δy = Y(t+1) –Y’(t-m)  (2) 
 
Where Y(t) is the current system output, U(t) is the 
actual control action, and g(…) is the transition 
function of the system that the neural network 
approximates. The suitable control action is 
determined according to the difference between the 
predicted value and the goal value of system 
output δc; (3) . 

 
δc = Yg(t+1) – Y’(t+1)  (3) 

 
Where, Yg(t+1) is the goal value of the system 
output.  

The neural network learns to predict Y(t+1) by 
Y(t), U(t), and their previous values. This value is 
not only a function of these two parameters, but 
also a function of the unmeasured disturbance X(t). 
Applying X(t) to the system affects its output and 
increases |δy|. Any changes of the amount of 
disturbance in the system allow the neural network 
to adapt to these new circumstances. This may take 
a time delay until |δy| is minimized, introducing 
instability in the system. The difference δy in non-
linear systems does not provide enough 
information to determine the appropriate control 

signal to stabilize the system output because of the 
delay of the system response, which characterizes 
PSs. Consequently, it is valuable to introduce a 
neural network control structure that makes a great 
effort of the mapping and approximation properties 
of neural networks to be applied to complex 
unknown systems such as PS. 
 
 
3. The Extended Control Structure 
An extended adaptive control structure includes 
three neural network modules: a Neural Network 
Disturbance Estimator (NNDE), a Neural Network 
System Model (NNSM), and a Neural Network 
Optimizer (NNO), (fig. 2).  The NNDE is used to 
estimate the amount of disturbance present to the 
system by previous and current measured values of 
the system output (Y(t-∆t), Y(t)), and the 
accumulative effective control action value - Ua(t-
∆t); (5).  
 

X(t) = f(Y(t-∆t),Y(t),Ua(t-∆t)) (4) 
 

Ua(t)=∑ti=t-te,t  β(t-ti) U(ti)    (5)              
 
Where β(t-ti) is a constant defined by the control 
latency profile (Fig. 3); ti ≥ 0; ∆t is the time 
interval since the last sample. Ua(t-∆t) determines 
the effect of previous control actions. The effect of 
each previous control action is attributed by β(t-
te); where (te) is the duration of the control action 
effect in the system. 
 

 
Fig. 2. An Extended Control Structure 

 
The NNSM approximates the behavior of the 

system and it is used to predict the value of the 
latter system output by the following system 
inputs: Y(t), Ua(t-1),  X’(t), and ∆t; (1). This 
allows the controller to issue a suitable control to 
prevent predicted unacceptable states of the system 
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output. The NNO is used to determine the 
appropriate control signal depending on the 
following parameters: Y(t), Y(t-1), and Ua(t-1); 
(6).  

U(t)=h((Y(t)-Yg(t)),(Y’(t+∆t)-Yg(t)),X(t),       
Ua(t-∆t))       (6) 

 
All three neural network modules are initially 

trained using an experimental data set, and then 
they are put together in the work with a real 
system; (fig.2). During the work of the controller, 
the neural networks adapt to an individual system 
behavior according to the training algorithm of the 
control structure to optimize the system stability. 

 
 

4. Training Algorithm 
The training algorithm of the controller is designed 
to support discreet time control, where time is 
divided into fixed slices. In the (t+∆t) time slice 
the controller determines the error of control – δc; 
(3). If this error is not acceptable: (|δc| > ε) then 
the controller enters the training mode in order to 
adapt to the system being controlled. ε- is the error 
tolerance of the controller. 

In the first stage, the NNDE is trained by using 
the Backpropagation Delta Rule to minimize the 
error of estimation |δx|. δx is found as a component 
of δy, hence δx has an influence on this error (7). 

 
δx = α1 δy    (7) 
 

Where α1 is a constant defined as follows: 
0<|α1|≤(Xavr/Yavr), α1>0; if Y is directly 
proportional to X, and α1<0 if Y is inversely 
proportional to X; Xavr and Yavr are the average 
values of X and Y respectively. This procedure is 
repeated until NNDE produces X’(t) + δx ± ε. 

 
Y’new(t+∆t)=g(Y(t),Ua(t-∆t),X’new(t),∆t)         (8) 

 
δu =α2 δc  (9) 

 
Where: α2 - a small constant defined by: 
0<|α2|≤(Uavr/Yavr), and α2<0; if Y is directly 
proportional to U, and α2>0; if Y is inversely 
proportional to U. δu is backpropagated through 
the NNO and a new value of U(t) is obtained and it 
is included in Ua(t). 

An error δy causes an error in determining the 
suitable control action (δu); (9). Moreover, an error 
δy may be caused by the NNSM itself. Finally, the 
NNO may cause an error δy because any error in 
determining U(t) will affect Y(t+∆t) causing an 

increase in |δc|; (3). |δc| is minimized by training 
all three neural network modules. In the second 
stage, X’new(t) is applied to the NNSM to make 
anew prediction Y’new(t+∆t); (8). Then the error of 
prediction δy is found, and this error is 
backpropagated through the NNSM and a new 
prediction of Y(t+∆t) is obtained and applied to the 
NNO to determine the new control signal. Then 
Ua(t) is given to the NNSM and another value of 
δy is obtained and backpropagated through the 
NNSM and so on.  

The NNSM and the NNO must be trained 
repeatedly until the control error (δc) is acceptable. 
Both modules are trained interchangeably forming 
a closed loop training system where they 
interchange the latest their outputs. As soon as the 
training of these two modules is complete, the 
controller must be able to decide a suitable control 
signal to stabilize the system. 
 
 
5. Application To A Physiological 
System 
The neural network controller is applied to the 
problem of control of diabetes in human diabetic 
patients. The insulin dependent diabetes mellitus 
(IDDM) is a wide spread chronic disorder that is 
characterized by hyperglycemia. The primary 
defect of IDDM is inadequate insulin secretion by 
pancreatic beta cells, which results in 
hyperglycemia, and many other complications. 
The IDDM patients are dependent on insulin to 
survive for the duration of their lives [4]. The goal 
of insulin treatment is to maintain blood-glucose 
concentration (BGC) within a normal range in 
order to prevent the risks of hyperglycemia and 
hypoglycemia. The management of IDDM is 
considered an optimal control problem of the 
BGC. Poor diabetic control may lead to many 
complications like retinopathy, neuropathy, and 
nephropathy, while an insulin overdose may result 
in hypoglycemia that leads to coma The patient 
self-treatment and the physician control are useful, 
but not accurate and have many risks. This 
problem is much more complicated in ICU 
patients. A great deal of research effort ha been 
devoted to attempting to achieve an effective 
management of this disease [5,6,8,12].  

In normal healthy person, the natural internal 
control of BGC is achieved by a feedback control 
mechanism. In diabetics, this mechanism must be 
utilized by an external control mechanism that 
must be very accurate [9,10]. Here we apply the 
proposed control structure to the control of BGC 
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by specifying suitable doses of insulin in the right 
moments. This system may be used as advisory 
system or may be accompanied by an insulin 
infusion pump in a direct control mode. 

All three neural networks of the controller are 
implemented as three layer backpropagation 
networks with the binary sigmoid activation 
function. These neural networks were given the 
following learning rates: αx=0.1, αy=0.05, αu=0.01. 
The component parameters of the system output 
are assigned the following values: α1=0.021, α2= -
0.054. Neural networks are initially trained using a 
clinical database of IDDM patients. This database 
records contain the daily follow-up of 70 patients 
for periods of (2-7) months. It includes information 
about BGC, insulin types, insulin doses, meals, 
amounts of exercise, and times of BGC measures. 
Hence, the control module is defined by seven 
parameters: current and latter BGC, disturbance, 
accumulative insulin dose, time interval between 
measures, and the recommended by physicians 
dose of insulin. The accumulative insulin dose is 
found by (5); where βi constants are determined 
according to insulin profile; (fig.3). 
 
 
6. Testing The Control Model 

The controller must gradually adapt to a 
specific individual diabetic patient characteristics 
of organism if it is applied to control his BGC. 
These characteristics include: the degree of defect 
in the patients internal control of BGC, the 
amounts and time of response to changes in the 
meals and exercise, the style of his life and diet, 
etc.  

 
Fig. 3.   The Insulin Profile 

 
The controller is trained using the clinical 

database to be able to control an average patient 
BGC. Then it is given a series of inputs from the 
patients’ records data-58 to enforce it to adapt to 
this arbitrarily selected patient. This series includes 
periods between BGC measures, disturbance 
values, insulin doses, and the initial BGC of this 
patient at the beginning of his recorded clinical 
treatment. Working in the control mode the 

controller is fed by disturbances and the periods 
between BGC samples. The controller specifies 
insulin doses for the patient and if necessary, it 
switches to the learning mode to adapt to the 
system.  

The results of the work of the controller are 
demonstrated in (fig. 5). The actual data base 
entries that show the physician’s management is 
illustrated in (fig.4). It can be seen from (fig.5), 
that the control efficiency of the controller is 
improving rapidly by the time as the neural 
networks adapt to the characteristics of the specific 
patient. Note that (fig.4) encounters a high peek of 
BGC that mount to 350 mg/dL, while (fig.5) 
includes only the same as the first peek of BGC of 
fig.4 (300 mg/dL). Other peeks of BGC gradually 
decrease by time.  

The results of this test show a temporal increase 
of the system stability, so that a near disturbance 
rejection control is obtained. However, there are 
still limited fluctuations of the BGC resulting from 
disturbances, these fluctuations of BGC are normal 
in healthy persons depending on the meal, stress, 
and exercise. We can see that the fluctuation of the 
system state is within the acceptable range of the 
BGC for the most of control time, and the 
fluctuation out of the acceptable range happens 
only in short time periods which is normal even in 
healthy organisms.  
 
 
7. Conclusion 
A neural-network based adaptive control approach 
is presented and an adaptive predictive control 
structure is proposed in this work. This approach is 
completely based on the estimation and 
approximation properties of neural networks. It 
uses three neural network modules: the disturbance 
estimator, the system model, and the optimizer.  

The disturbance estimator bases its estimations 
on previous and current measures of the system 
state and the issued control actions. The system 
model emulates the system function and makes 
predictions of the system output to the optimizer. 
The optimizer issues control actions to prevent 
unpreferable predicted system states from 
occurring. The neural-network modules of the 
controller are trained by using a clinical database 
of diabetic patients, and then they are trained 
additionally during the control process in order to 
adapt to the system behavior and to enhance the 
control quality. The system model is trained 
directly according to the backpropagation of its 
output errors. The disturbance estimator and the 
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optimizer are trained by their partial influence 
error on the system model. This approach 
capitalizes the ability of the controller to adapt to 
the system behavior, and to improve its control 
strategy.  

The neural-network modules extract the system 
characteristics from their experience during the 
control process. As this experience increases by 
time, the system stability is improved. The 
physician treatment of diabetes is not able to keep 
a high stability due to the high complexity of the 
problem of control of diabetes. The control system 
behavior in some way- is similar to behavior of a 
junior physician who accumulates experience and 
rapidly improves his performance and accuracy of 
management of a disease. Real application to 
specific patients based on the clinical database of 
diabetic patients has demonstrated the efficiency 
and stability of the control system. However, a 
difficulty remains with the definition of values for 
the amounts of the partial influence error 
components of the system output, and other 
controller parameters. Further investigation is 
needed in this manner.  
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Fig. 
4.  PHYSICIANS MANAGEMENT OF A DIABETIC PATIENT 
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 Fig. 5.  SIMULATED NEURAL-NETWORK MANAGEMENT OF A DIABETIC PATIENT 
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