
A Rapid Algorithm for Topology Construction from a Set of Line Segments
SEBASTIAN KRIVOGRAD, MLADEN TRLEP, BORUT ŽALIK

Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova ulica 17, SI - 2000 Maribor
SLOVENIA

Abstract: - An efficient algorithm for topology construction from a set of line segments is considered in the paper. The
algorithm works in two steps: input analyzing, and topology construction. In the first step, inconsistencies in input are
solved. The second step consists of two parts: the envelope construction, and determination of neighbouring relations
between the obtained neighbouring The time complexity of the first part highly depends on the input data distribution,
and the second part, which presents our original work, runs in O(n), what is confirmed by experiments using artificial
input and real data from geographic database.

Key-Words: - Geographic Information System (GIS), Topology Construction, Uniform Plane

1 Introduction
In the past, land-maps were drawn manually on large
sheets of papers. These traditional maps have been
gradually replaced by digital formats as computers took-
over the storage and maintenance of the data with the
graphical content. The traditional maps have started to
be digitalised, filtered, and vectorized [1, 2]. In this way,
more and less complete and correct set of line segments
is obtained. However, although these maps could look
perfectly correct, the obtained set of line segments does
not contain topological information, which is necessary
for various spatial analyses and a geometric reasoning of
land-maps [3, 4]. However, the lack of the topology
information is not related only with the scanned old
cadastre maps, but it also arises during actual activities.
For example, spatial data are frequently obtained in a
pure digital form (i.e. satellite images, orthophoto),
surveyors measure visible points and not closed parcels.
Therefore, solutions, which automatically construct the
topological information, are more than welcome [3].
Some actual GIS systems include program solutions for
the problem being considered here, but we have not
found any hints for implementation. Recently, Žalik [5]
proposed an algorithm for topology construction. We
have analyzed his solution, identified bottlenecks,
optimized the algorithm, and partially employed it in our
solution. As a result, a very fast, numerically stable, and
easy to implement solution has been obtained, and it is
presented in the paper.

The paper is organized in five sections. After the
introductory one, detection and removal of
inconsistencies in the input data are briefly considered in
Section 2. Section 3 presents the algorithm for topology
construction. In Section 4, analysis of the algorithm time
complexity, and practical results are given. At the end,
the results are emphasized and the work is evaluated.

2 Detection and Removal of

Inconsistencies
Input set of line segments frequently contains
inconsistencies, which have to be detected and removed
before the topology construction algorithm is used. Fig.
1 shows some of the characteristic inconsistencies:
• Line segments intersect but the intersection point is

not marked as a vertex (case (a) in Fig. 1).
• line segment crosses for a small distance another line

segment instead of ending on it (case (b) in Fig. 1).
• Similarly to the previous case, a line segment should

touch another line segment in a vertex (case (c) in
Fig. 1).

• A vertex is isolated (case (d) in Fig. 1).
• Vertices should be joined (case (e) in Fig. 1).
• In a vertex, at least two line segments should meet

each other (case (f) in Fig. 1).
• A line segment is isolated (case (g) in Fig. 1).

A detailed description how the inconsistencies are
detected and removed is described by Žalik [5]. We give
just a brief summary here. The following tasks are
implemented:
1. All input polylines are split into line segments.
2. The presented line segments are checked for

intersections. The approach described by Žalik [5]
uses a uniform plane subdivision for this task. This
approach includes computationally expensive
rasterisation of the line segments, and relatively
complicated way of marking the line segments being
already tested for intersection. It turns out as the
most critical part concerning the spent CPU time.
Instead of the uniform plane subdivision, the sweep-
line approach can be applied to accelerate

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

calculations of the intersection points [6]. This
approach requires sorting of the presented line
segments, but this task is much easier and faster than
rasterisation of the line segments.

3. Vertices are examined to remove duplicates, to join
vertices being closer than prescribed tolerance, and
to remove isolated vertices. All vertex problems are
reduced to the closest point problem, one of the most
fundamental problems of computational geometry
[7]. For that, a uniform plane subdivision (UPS)
turns out as a very efficient solution as far a
distribution of vertices is uniform enough [8]. Our
experience presented Section 4 confirms that UPS
can be efficiently used in GIS environment.

The steps described above automatically remove the

majority of existing inconsistencies. Unfortunately, some
ambiguous cases require a user intervention. Case (a) in
Fig. 2, for example, shows two vertices being very close
(within prescribed tolerance). Each of them defines a
pair of line segments (this is the reason why they are not
merged automatically). The algorithm does not know
whether these vertices should be joined or a tiny corridor
exists between them. Case (b) in Fig. 2 shows similar
situation. Such cases are visualized and the user is asked
for advice.

During the process of removing inconsistencies, the
data structure is build. It consists of a list of vertices and
a list of line segments. Each vertex contains information
about the line segments terminating in it.

3 Problem Solution
The algorithm for constructing polygons from
inconsistencies-free set of line segment consists from
three steps:
• determination of a set of line segments forming the

outer border of the area,
• creation of polygons (parcels), and
• establishing spatial relationships between obtained

polygons (finding the parents of holes).

The algorithm proposed by Žalik [5] omits the last
step and therefore, the topology is not complete.

3.1 Construction of the outer border of the area
The set of line segments forming the outer border of the
area will be considered as an envelope in our case. The
construction begins with selecting the vertex, which for
sure belongs to the envelope. This is, for example, the
vertex with the minimal x-coordinate (vertex 1 in Fig. 3).
If there are more vertices with the same x-coordinate, the
one with the smallest y-coordinate is chosen. For the first
line segment, the line segment with the smallest angle
regarding the negative x-axis is chosen (line segment (1,
2) from Fig. 3). After this, the algorithm moves to the
end vertex of the current line segment (vertex 2 in Fig.
3). The next line segment is selected among the line
segments ending in the observed vertex (except the one
employed already). The line segment forming the
smallest angle with the last line segment in the envelope
is selected (line segment (2, 7) in Fig. 3). The process
continues until the start vertex is reached. In this way,
the line segments of the envelope are oriented in
counter-clockwise direction. In our case, the envelope
consists from the following sequence of vertices: 1, 2, 7,
8, 9, 10, 11, 12, 13, and 14.

3.2 Construction of the polygons
Construction of polygons always starts with the line
segment being the member of the envelope. Such line
segment limits a single polygon. Let us suppose the line

Fig. 1: An inconsistent set of geometric data

Fig. 2: Possible errors in data

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

segment (1, 2) from Fig. 3 has been chosen. For the next
line segment, the algorithm chooses the line segment
with the largest angle to the current one. In Fig. 3, the
selection is made between the line segments (2, 7) and
(2, 3). Because β2 > β1, the line segment (2, 3) is the
right one. The algorithm continues until the starting line
segment is reached, and in this way, the polygon is
closed. In our case, the polygon defined by the vertices
1, 2, 3, 4, 5, 6 is obtained. The employed line segments
belonging to the envelope (the line segment (1, 2)) are
removed from the data structure, and the rest of the
employed line segments are inserted into the envelope.
They are already oriented adequately.

In this way, the algorithm continues until the
envelope is not empty. However, in some cases some
line segments remain in the data structure. They belong
to the polygon holes or polygons inside the holes. In Fig.
3, two holes are shown defined by vertices 19, 20, 21,
22, 30, and 23, 24, 25, 26, 27, 28, 29. The described
algorithm is applied again.

3.3 Establishing spatial relationships
To establish spatial relationships between the created
polygons and holes, the parents of the holes have to be
determined. For each hole, one of the hole vertices could
be selected, and then tested regarding the containment
against all the polygons. One of the known point-in-
polygon algorithms could be applied for this [9, 10].
However, this would require testing all the polygons in
the worst case for each hole. However, the uniform plane
subdivision, which has been used during inconsistency
detection and removing, can be applied here efficiently.
The algorithm is based on assumption that the closest
vertex of the presented polygons is surrounded by the

polygons, which contain the tested point. For this reason,
each vertex stores a list of polygons, which surround it.
If none of the surrounding polygons contains the tested
point, the neighbouring parcels are added. Fig. 4 shows
an example. The vertex 2 is the closest to the tested
vertex 1. All polygons marked by a are examined at first.
As seen, none of them contains the vertex 1. The
neighbours marked by b are checked in the next step and
one of them contains the vertex.

4 Results
As described, the algorithm for topology construction
consists of two steps:
• detecting and removing inconsistencies and
• topology construction.

In this section, we consider theoretical time
complexity for the topology construction with
inconsistencies already removed. Namely, the detection
and removal of them highly depends on the input data.
The algorithm for the topology construction is
implemented in four steps:
1. At first, all line segments are added to their ending

vertices. Two vertices define each line segment, and
thus this part is finished in linear time O(n), where n
is the total number of the line segments.

2. The angle of each line segment regarding the
negative x-axis is calculated. This task is also
terminated in O(n).

3. The line segments are sorted around their vertices
regarding the angles against x-axis. At each vertex,
there are mi line segments (and mi angles). We can
expect

ni0 , 2
1

0

<≤<<⇒=∑
−

=

nmnm i

n

i

i

Therefore, the sort in each vertex does not depend on
n; i.e. it is performed in O(1) time. As we have n
vertices, the common time complexity is O(n).

Fig. 3: Consistent input data for topology construction

algorithm

Fig. 4: Location of the polygons for the containment

test

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

4. The construction of the topology requires that each
line segment is passed exactly twice giving us time
complexity O(n). If holes are detected, the parent
polygons have to be found. If we assume distribution
of vertices which is not extremely non-uniform, the
closest point to tested point is found in constant time
O(1), as proved by Bentley [8]. After this, the point-
in polygon problem has to be solved.
Experimentally, we have shown that only t << n
polygons have to be checked, and therefore, the
expected time complexity remains O(n). It is worth
to mention that in real examples, very frequently,
holes do not exist at all. However, in highly non-
uniformly distributed input data with a large number
of holes, this part consumes a lot of time, and the
time complexity grows up to O(n2).

As seen, the expected time complexity of the

algorithm for topology construction is O(n).

4.1 Measurements of Spent CPU Time
In this subsection, the measurements of the algorithm's
run-time are given. A computer PC Pentium Celeron 600
MHz with 128K Cash and 384MB RAM running under
Windows 2000 was employed. The algorithm is
implemented in C++. The measurements have been done
on five real examples (one of them is shown in Fig. 5)
and three artificial examples (Fig. 6). Table 1
summarises the results, where the first 5 entries
correspond to the real examples.

The diagram in Fig. 7 shows spent CPU time for
topology construction regarding the number of the
output line segments without determination of
neighbouring relations. The spent CPU time for topology
construction with the determination of the neighbouring

relations regarding the number of holes is shown by the
diagram in Fig. 8. In this case, only the real examples
containing holes are considered.

Table 2 shows the number of vertices searched to
find the nearest vertex during the determination of the
neighbouring relations.

a)

b)

Fig. 5: A real example: a) 48672 line
segments on input, b) 19964 on output

 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8
No. of input edges 2,467 11,464 17,413 36,297 48,672 102 202 402
No. of input vertices 2,395 4,897 14,990 15,820 20,014 200 400 800
No. of output edges 2,467 5,941 17,413 18,305 19,964 5,100 20,200 80,400
No. of output vertices 2,395 4,897 14,990 15,820 24,399 2,601 10,201 40,401
No. of polygons 73 1,078 2,583 2,560 4,764 2,500 10,000 40,000
No. of holes 0 35 193 205 542 0 0 0
Sort of line segments 0.004 0.025 0.045 0.106 0.144 0.000 0.000 0.000
Inconsistencies removal 0.038 0.483 0.990 1,379 3.017 0.223 1.306 12.514
Association of line segments to vertices 0.006 0.014 0.043 0.044 0.059 0.013 0.042 0.191
Angle calculation 0.002 0.006 0.015 0.014 0.022 0.000 0.011 0.044
Angle sort 0.006 0.012 0.034 0.036 0.047 0.008 0.034 0.139
Walk-through without father search 0.017 0.050 0.150 0.150 0.210 0.043 0.187 0.754
Walk-through with father search 0.017 0.069 0.331 0.358 0.938 0.043 0.187 0.754
Total time for topology construction
without father search 0.031 0.082 0.242 0.244 0.338 0.064 0.274 1.128

Total time for topology construction
with father search 0.031 0.101 0.423 0.452 1,066 0.064 0.274 1.128

Table 1: CPU times (in sec) for five real examples and three artificial examples

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

a)

b)

Fig. 6: An artificial example: a) 102 line
segments on input, b) 5100 on output

0

0,2

0,4

0,6

0,8

1

1,2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

number of line segments

tim
e

(s
)

Fig. 7: Topology construction without

determination of neighbouring relations

0

0,2

0,4

0,6

0,8

1

1,2

0 100 200 300 400 500 600

number of holes

tim
e

(s
)

Fig. 8: Topology construction with

determination of neighbouring relations

 Ex. 2 Ex. 3 Ex. 4 Ex. 5
Min no. of points 2 7 7 5
Max no. of points 59 257 134 137
Average no. of points 21.4 62.8 40.2 50.0
Min no. of polygons 1 1 1 1
Max no. of polygons 63 44 34 370
Average no. of polygons 4.2 2.6 3.1 5.0

Table 2: Number of searched near
vertices and polygons for father search

At the end, we give the comparison of spent CPU

time with the algorithm developed by Žalik [5] for one
of the real examples and an artificial one (Table 3). The
time comparison is made on sum of time needed for
removal of inconsistencies and time needed for topology
construction without father search.

 real data

containing 11464
input edges

artificial data
containing 202

input edges
Žalik’s
algorithm 7.16 sec 438.51 sec

Our
algorithm 0.59 sec 1.58 sec

Table 2: A comparison with Žalik’s
algorithm

As seen from Table 3, the proposed algorithm is

much faster than the referenced algorithm. In the real
case, it is quicker for about 12 times, and in the artificial
case, when a lot of intersections exist between the input
line segments, for approximately 275 times.

5 Conclusions
In this work, an efficient algorithm for constructing
topology from a set of line segments is given. The
presented approach upgrades the approach given by
Žalik [5], and consists from two main parts:
• detecting and removing inconsistencies from input

data,
• topology construction.

The problem of determining the parent polygons to
holes has been solved efficiently by applying the
uniform plane subdivision. Theoretical expected time
complexity has been estimated to O(n), where n
represents the number of input line segments. This time
complexity has been also confirmed by experiments
using real and artificial (almost the worse case) input
data.

Acknowledgements:
We are grateful to the Slovenian Research Agency for
supporting this research under the project Z2-6661-

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

0769-04/2.12 - Compression of elements appearing in
the final elements methods (FEM)

References:
[1] M. Sonka, V. Hlavac and R. Boyle, Image

Processing, Analysis and Machine Vision,
Chapman & Hall Computing, 1993

[2] N. R. Chrisman, Efficient digitizing through the
combination of appropriate hardware and software
for error detection and editing, Geographical
Information Systems, Vol. 1, No. 3, 1987, pp. 265-
277

[3] R. Laurini and F. Milleret-Raffort, Topological
Reorganisation of Inconsistent Geographical
Databases: A Step Towards Their Certification,
Computer & Graphics, Vol. 18, No. 6, 1994, pp.
803-813

[4] T. Ubeda and M. Egenhofer, Correcting
Topological Errors, In: Scholl V, editor. Advances
in Spatial Databases - Fith International
Symposium on Large Spatial Databases, SSD'97,
Lecture Notes in Computer Sciences, 1262, Berlin:
Springer-Verlag, 1994, pp. 283-297

[5] B. Žalik, A Topology Construction From Line
Drawings Using A Uniform Plane Subdivision
Technique, Computer-Aided Design, Vol. 31, No.
5, 1999, pp. 335-348

[6] M. Berg, M. van Kreveld, M. Overmars and O.
Schwarzkopf, Computational Geometry,
Algorithms and Applications. Springer-Verlag,
1997

[7] F. P. Preparata and M. I. Shamos, Computational
Geometry: an Introduction, 2nd ed. Springer-
Verlag, 1998

[8] J. L. Bentley, B. W. Weide and C. Y. Andrew,
Optimal Expected-Time Algorithms for the Closest
Point Problems. ACM Transaction on
Mathematical Software, Vol. 6, No. 4, 1980, pp.
563-580

[9] M. Chen and P. Townsend, Effcient and consistent
algorithms for determining the containment of
points in polygons and polyhedra, In Marechal, G.
(Ed.), Proceedings of Eurographics'87, Elsevier
Science, Amsterdam, 1987, pp. 423-437

[10] C-. W. Huang and T-.Y. Shih, On the complexity of
point-in-polygon algorithms, Computers &
Geosciences, Vol. 23, No. 1, 1997, pp. 109-118

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp133-138)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

