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Abstract:  InterSymbol Interference (ISI) of the radio propagation through channels is a major factor that limits 
the performance of mobile communication systems and can be compensated by equalization. One of the basic 
groups of equalizers is based on linear algorithms. In this paper, we propose the other method based on 
Hammerstein filter as a nonlinear memoryless blind equalizer. We have compared these two methods by 
simulation and have shown that the latter method results have better performance compared to the former ones; 
i.e. the Hammerstein filter introduces lower BER than linear algorithms, so makes it a viable alternative to 
former equalizers. For all methods studied in this paper, blind equalization is assumed. At last blind 
Hammerstein equalizer analyzed in order to study its convergence capability and unbiased property.      
   
Keywords: Blind Equalization, Hammerstein Filter, Least Mean Square, Zero Forcing. 
 
1  Introduction 
Many systems suffer from InterSymbol Interference 
(ISI); so, the equalization methods should be 
employed to combat this effect. In the case of linear 
equalizers, two different criteria are used for 
determining the values of the equalizer coefficients. 
One criterion is based on the peak distortion at the 
output of the equalizer, namely the zero forcing 
algorithms [1], and the other one is based on the 
minimization of the mean square error at the output 
of the equalizer, named as Least Mean Square 
(LMS) [1]. These two algorithms can be performed 
without training sequence which results in blind 
equalization [2, 3]. 
   In [4] Hammerstein filter is used as a memoryless 
filter for flat fading channel equalization but it can 
not be used in non flat fading channel equalization. 
In non flat fading channel (channel with memory 
grater than one) HDFE equalizer [4] is used for 
equalization. 
   We have proposed using nonlinear filters instead 
of linear ones for blind channel equalization. In 
particular, we have used Hammerstein filter for 
adaptive blind channel equalization and have shown 
that this filter can equalize channel with memory 
greater than one (non flat fading channel), blindly  

 
 
with the much lower complexity than HDFE. We 
have simulated three methods with different 
channels and have compared them with respect to 
bit error rate (BER). The simulation results confirm 
the faster convergence in blind adaptive case and 
also the better bit error rate performance of the 
proposed method over the traditional linear 
equalization techniques. 
   The paper is organized as follows; we propose the 
adaptive blind equalization technique based on 
Hammerstein filter in section 2. Analytical study of 
purposed method shown in section 3. In section 4, 
the simulation results are presented. finally in the 
last section, some concluding remarks are 
presented. 
 
2 Blind Hammerstein Adaptive 

Equalization 
The block diagram of the proposed equalizer is 
shown in Fig. 1, where I(n) is the iid, BPSK 
transmitted data, f(n) is the channel impulse 
response (modeled as taped delay lines [1]) and x(n) 
is the received signal available at the receiver. Noise 
at the input of the receiver is denoted as v(n) and 
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assumed to be Additive White Gaussian Noise 
(AWGN). 
 

2.1  Hammerstein Filter  
Referring to Fig.1, the output of the Hammerstein 
filter )(ˆ nI  has the form of [3, 4]: 
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   There are no delay terms, since we assume no 
memory for the filter. The weights ig  have to be 
determined such that this polynomial equalizes the 
channel.  
 
   
2.2  The Hammerstein Filter as a Blind 

Equalizer 
We used Hammerstein filter as a channel equalizer 
as shown in Fig. 1. The equation (1) can be written 
in matrix form as: 
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 mm IGX ˆ= .                                                             (2)  
The output of the channel is: 
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   The equation (3) has three parts; the first part 
indicates ISI, the second part is noise and the third 
part is desired signal. In order to eliminate ISI and 
noise, we should minimize MSE by statistical 
Gradient method. The MSE cost function is: 

{ }2)ˆ( kkk IIEJ −=                                                      (4) 
Using equation (1), we have: 
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   In order to minimize MSE, the Gradient vector 
should be set to zero: 
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   Using equation (6), we can determine }{ ig  
coefficients by the following iterative equation: 
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ε   indicates the error vector and 

∆ is the step size. 
   In non-blind estimations, we can use training 
sequence instead of kI . But in blind estimations, we 
can estimate kI  by: 
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3  Analytical Study of Blind 
Hammerstein Equalizer 
We can extend equation (7) to represent the 
coefficient respect to initial value ( ( )0

ig ), for this 
manner this equation writes as:  
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If the initial value is chosen zero in equation (9), 
then: 
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For large amount of k, sigma can be approximated 
by expectation and subsisted kx by (3), Î  by (1) so 
the (10) rewrite as:  
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Input data { }kI  assumed to be iid with zero mean 
and data are in depended to noise so the first term in 
(11) writes as (12). 
 

{ } { }1
0

1
0

0
. ++

−
=

==
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+∑ i

k
ii

k
i

i

kek

L

k
ek IEfIfEnIfIE .                (12) 

If we suppose strict stationary of (i+1) order so 
{ }1+i

kIE  is equal to ( )thi 1+ moment of I and (12) 
Lead to: 
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The second part of (11) can be rewrite as:  

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp249-253)



( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

==
∑∑ ji

k

N

j

k
j

i
k

i
k

N

j

k
j xgExxgE

00

                               (14) 

Near the convergence, the amounts of ( )k
jg  are 

approximately constant and also ( )k
jg  known in step 

k+1 and by strict stationary (14) can be written as  
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If (15) is combined with (13) the updating rule for 
Hammerstein Coefficient is calculated by:  
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It is useful to write (16) as a matrix form.  
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( ) ( ) UMgg kk +=+1                                                    (17) 
This equation is vary important because describe a 
discrete state-space equation for Hammerstein 
Coefficient updating. So convergences of adaptive 
system lead to stability discussion of state-space 
system. This state space system is stable if and only 
if all he singular value of matrix m is not exceeding 
one. 

[ ]10 ,, −=ΛΛ= N
H diagVVM λλ Λ  

 )max(argmax λλ =  , 1max <λ                                      (18) 
In other to discuss about step size in this problem if 
the max singular of M defined as maxλ  then the step 

size must be lower than
max

1
λk

. For finding a useful 

bound for maxλ  considers that maxλ  is lower than 
the sum of the singular value of M or trace of M so 
(18) rewrite as: 
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After successful convergence by initial value close 
to zero the even coefficients become zeros and 
Hammerstein inform as odd polynomial. After 
convergence the mean of estimation error is 
calculated as: 
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So the estimator is asymptotically unbiased. The 
error variance also can be calculated iteratively as 
follow: 
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If the first tap of the channel impulse response is 
known, then (21) become simpler by using 
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4  Simulation Results 
For evaluation of the BER performance of the 
receiver discussed in this paper, we simulated the 
equivalent base band system shown in Fig. 1. As a 
purpose of comparison, we have done the 
simulation process for the three blind equalizations 
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studied in this paper and have compared the results 
for different channels. For the simulation, we 
generate bit stream of i(n) uniformly from {-1,1}. 
   Fig. 2 shows that the Hammerstein equalizer have 
better BER performance compared to two other 
linear methods in the practical region of Eb/N0. 
   We simulated different orders of Hammerstein 
filter and observed that the Hammerstein filter of 
order 10 has the best performance. Fig. 3 shows the 
convergence property of Hammerstein equalizer and 
MMSE equalizer versus number of iterations. Fig. 4 
shows BER of three methods versus Eb/N0 for 
another channel with deep nulls (its impulse 
response is shows in Fig. 5). The simulation results 
show that the two linear methods can not equalize 
the channel appropriately; however, the 
Hammerstein equalizer has done it with an 
outstanding performance. 
 
5  Conclusion 
In this paper we have introduced a new approach for 
blind channel equalization, using Hammerstein 
filter as equalizer at the receiver. Regarding BER 
performance of the three studied methods, we 
observe that Hammerstein filter has the best 
performance compared to other studied linear 
equalization methods. 
   We can conclude that Hammerstein filter as a 
nonlinear filter can equalize non flat channels more 
properly than linear equalizers due to the nonlinear 
nature of the optimum estimation. It has also been 
observed that by using the proposed method, the 
deficiency of Hammerstein equalizers in not having 
memory can be solved with the much lower 
complexity than HDFE [4]. 
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Fig.  1: Block diagram of the system with Hammerstein type 

equalizer 

 

 
 
 

Fig. 2: Bit error rate versus Eb/N0 (dB) for three 
methods of Hammerstein filter of order 10, Zero 

forcing and LMS. 
Channel: 321 4556.01.0133.89.)( −−− +++= zzzzf  
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Fig. 4: Bit error rate versus Eb/N0 (dB) for three 
methods of Hammerstein filter of order 10, Zero forcing 

and LMS. 
Channel: 321 693.0081.0108.7208.)( −−− +++= zzzzf  

Fig. 3: Convergence property 
Channel: 321 693.0081.0108.7208.)( −−− +++= zzzzf  
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Fig. 5: Magnitude and Phase of the channel with 
impulse response: 
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