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Abstract:– Many of the elements of sparse matrices have zero value. Known examples of these types 
of matrices are lower and upper triangular, which arise frequently in the solution of linear equation 
systems. Because many of the elements of these matrices are zero, it is advisable to store them –
whether on disk or in memory– in a way that saves space. In this paper sparse matrices called central 
triangular are analyzed and mechanisms for their efficient storage by means of 1D arrays are proposed. 
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1  Introduction 
Many of the elements of sparse matrices have 
zero value. Known examples of these types of 
matrices are lower and upper triangular, which 
are frequently used for the representation of 
linear equation systems [4]. Because many of 
the elements of these matrices are zero, it is 
advisable to store them –whether on disk or in 
memory– in a way that saves space. 

The analysis of storage by means of 1D 
arrays for lower and upper triangular matrices 
and their corresponding addressing formulas has 
been made in [2, 5].  In [6] some variants of 
lower and upper triangular matrices are also 
analyzed. Nevertheless, it is very important to 
say that other types of sparse matrices including 
those with symmetry have remained unanalyzed. 

In this paper we analyze storage by means of 
1D arrays of sparse matrices of the central 
triangular type, plus one matrix of the rhombus 

type. In Section 2, the central triangular matrices 
are defined and analyzed. In Section 3, we 
analyze the Rhombus Matrix. Section 4 explains 
a couple of alternative methods to find 
addressing formulas of sparse matrices, and 
finally in Section 5 we present conclusions and 
suggestions for future work.  
 
2  Central Triangular Matrices 
 

In this section we analyze both Central Upper 
Triangular Matrix (CUTM) and Central 
Semi−Lower Inverse Triangular Matrix 
(CSLITM).  
 
2.1. Central Upper Triangular Matrix 
Let us define a Central Upper Triangular 
Matrix of order N, N > 0, and odd. Figure 1 
shows an example of this kind of matrix, with N 
= 7.  
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 1 2 3 4 5 6 7 
1    30    
2   2 8 9   
3  11 3 4 7 8  
4 12 30 2 1 20 3 5
5        
6        
7        

 
Figure 1. Central Upper Triangular Matrix 

 
The elements that are outside of the triangle 

are zeros and all or most of the elements in the 
triangle are different from zero. It must be said 
that this kind of matrix can be applied in 
different areas with different purposes, for 
instance:  
 
a) In statistics in the application of the 

triangular distribution.  
b) In microstructure for the recognition of 

triangular faults –defects– in images of 
diverse materials as steel. 

c) In fractals in order to represent the 
Sierpinski Triangle or Sierpinski Gasket [1], 
which even has applications in electrical 
circuits and in microscopic patterns, as the 
case of DNA. 

d) In mathematics in order to represent the 
Pascal Triangle. 

 
2.1.1. Representation of a CUTM in a 1D 
Array 
Because in this kind of matrix a lot of elements 
are zero, the choice is to use a 1D array to store 
only the values of the triangle in order to save 
space. These matrices can be represented in a 
1D array by rows, from left to right. In Figure 2, 
we represent the matrix shown in Figure 1 using 
this mechanism. 

Given an element (i, j) belonging to the 
triangle, we are interested in determining which 
position corresponds to this element in the 1D 
array.  

The position of element (i, j) is determined 
in the following way. 
 
a  =  Total of elements belonging to rows that 
precede in the triangle to element (i, j).  
b  =  Column that occupies the element (i, j) in 
row i of the triangle −taking nonempty positions 
into account–. 
 

Therefore the position of element (i, j) is 
given by: a + b. For instance, if we take element 
(3,3) then a = 4 and b = 2 –position 6 in the 1D 
array of Figure 2– since the element (3,3) is in 
the second occupied column of row 3 of the 
triangle. Note that for an element located in row 
i, the value a corresponds to the sum of the first 
(i - 1) odd numbers.  

On the other hand, value b is obtained by: 
 
a) For the element (1,4) of row 1 that is located 

in the central column of the matrix (⎡N/2⎤ = 
4, the operation ⎡x⎤ rounds up to the next 
integer greater than x), a total of 3 units 
should be subtracted from its column to get 
a corresponding value b. 

b) For the elements of row 2: (2,3), (2,4), and 
(2,5); 2 units from their respective columns 
should be subtracted to get a corresponding 
value b. 

c) For the elements of row 3: (3,2), (3,3), 
(3,4), (3,5), and (3,6); one unit of their 
respective columns should be subtracted to 
get a corresponding value b. 

 
Finally for the elements of row 4, 

subtraction is not necessary. This process can be 
seen in Table 1. 

 
 

Table 1. Summary of the process to get value b 
in a CUTM 

 Values to substract 
from j to get b 

Elements row i = 1, 
column j 

3 = 4 - 1 = ⎡N/2⎤  - i 

Elements row i = 2, 
column j 

2 = 4 - 2 = ⎡N/2⎤  - i 

Elements row i = 3, 
column j 

1 = 4 - 3 = ⎡N/2⎤  - i 

Elements row i = 4, 
column j 

0 = 4 - 4 = ⎡N/2⎤  - i 

 
Therefore: 

 

a = ∑
−

=

1

1

)1-2(
i

h

h  = i2 - 2i + 1 = (i - 1)2 

 
b = j - (⎡N/2⎤ - i) 

 
The position for an element (i, j) is given by: 

      
Pos(i, j) =  i2 - i + j - ⎡N/2⎤ + 1  (1) 
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Figure 2. Representation by rows of a CUTM 

 
For the element (3,3) belonging to the 

matrix shown in Figure 1, formula (1) is applied:  
   
Pos(i, j) = 32 - 3 + 3 - ⎡7/2⎤ + 1 = 6 
 
 
2.2. Central Semi−Lower Inverse  Triangular 
Matrix 
Let us now define a Central Semi−Lower 
Inverse Triangular Matrix of order N, N > 1, 
and odd. This type of matrix is used in 
applications of microstructure [3]. An example 
of this type of matrix (with N = 7) is shown in 
Figure 3. 

 
Figure 3. Central Semi−Lower Inverse 

Triangular Matrix 
 
2.2.1. Representation of a CSLITM in a 1D 
Array 
The matrix of Figure 3 can be represented in a 
1D array by rows as is shown in Figure 4. 
 
1 2 3 4 5 6 7 8 9 
34 20 43 3 6 23 10 5 1 

 
Figure 4. Representation by rows of a CSLITM 

 
Using a method similar to that presented 

before, we can determine a formula for this kind 
of matrix. Nevertheless, the process to get a and 
b is a little more complicated. Let us have an 
element (i, j), then a represents the total of 
elements belonging to rows that precede in the 
triangle of the CSLITM to the element (i, j).  

Therefore for the elements of row 5: (5,2), 
(5,3), (5,4), (5,5), and (5,6); they have a = 0 

because there are no rows in the triangle which 
precede them. For the elements of row 6: (6,3), 
(6,4), and (6,5); a = 5, and for the element of 
row 7: (7,4); a = 5 + 3 = 8. This process can be 
seen in Table 2. 

 
Table 2. Summary of the process to get value a 

in a CSLITM 
 

Row i ε 
CSLITM 

ω = Total rows 
which precede 
to i in the 
CSLITM 

Values to 
add in 
order to 
get a 

5 0 0 
6 1 5 
7 2 5 + 3 

 
Now let us define t as the total of rows that 

separate row i of the central row ⎡N/2⎤ = 4. For 
example, for i = 5, t = 1; for i = 6, t = 2, and for i 
= 7, t = 3.  So we get:  
 

t = i - ⎡N/2⎤ 
 

Therefore w = t - 1 (see second column of 
Table 2), that is: 
 

w = i - ⎡N/2⎤ - 1 
 

Note that when w = 0, we should add 0 
elements. When w = 1 we should add 5 
elements, and when w = 2 we should add 5 + 3 
elements (see third column of Table 2). 
Therefore: 

                         a = ∑
=

w

h

c
1

 

 
Now the nature of component c should be 

determined. For the particular case of a matrix 
of order N = 7, sum begins with elements of row 
5 (5 elements), afterward with the elements of 
the row 6 (3 elements), etc. Therefore the total 
elements of the first w rows of a CSLITM is 
given by the sum going back from odd numbers 
starting in N - 2. That is: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
30 2 8 9 11 3 4 7 8 12 30 2 1 20 3 5 

 1 2 3 4 5 6 7 
1        
2        
3        
4        
5  34 20 43 3 6  
6   23 10 5   
7    1    

Row 5 Row 6 Row 7
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     a = ∑
=

w

h

hN
1

)1-)1-2(-(  = w(N - w - 1) 

 
On the other hand, value b is obtained: 

 
a) For the elements of row 5: (5,2), (5,3), 

(5,4), (5,5), and (5,6); one unit of their 
respective columns should be subtracted to 
get a corresponding value b. 

b) For the elements of row 6: (6,3), (6,4), and 
(6,5); 2 units of their respective columns 
should be subtracted to get a corresponding 
value b. 

c) Finally, for the element of the row 7: (7,4); 
3 units of their respective columns should 
be subtracted to get a corresponding value 
b. 

 
This process can be seen in Table 3. 

 
Table 3. Summary of the process to get value b 

in a CSLITM 
 
 
 
 
 
 
 
 
 

 
Therefore, b = j - (i - ⎡N/2⎤), then the 

position of an element (i, j) will be given by a + 
b: 
 

Pos(i, j) = w(N - w - 1) + j - i + ⎡N/2⎤  (2) 
 

3  Rhombus Matrix 
 
Now let us define a Rhombus Matrix of order N, 
N > 0, and odd. An example of this type of 
matrix (with N = 7) is shown in Figure 5. A 
Rhombus Matrix can be seen as a composition 
of a CUTM and a CSLITM.  

This kind of matrix can be used to represent 
a fractal called Peano Curve [7]. Although 
based on abstract mathematics, fractals have 
practical applications in graphical computation, 
digitalization of images, and in the modeling of 
complex natural structures.          

 

 
 
 
 
 
 
 
 
 

Figure 5. Rhombus Matrix 
 
3.1. Representation of a Rhombus Matrix 
in a 1D Array 
The matrix of Figure 6 can be represented in a 
1D array by rows as is shown in Figure 7. 
 
1 2 3 4 5 6 7 8 9 

30 2 8 9 11 3 4 7 8 

 
 
10 11 12 13 14 15 16 
12 30 2 1 20 3 5 

 
17 18 19 20 21 22 23 24 25 
34 20 43 3 6 23 10 5 1 

Figure 6. Representation by rows of a Rhombus 
Matrix 

 
In this case, to find an addressing formula of 

an element (i, j) belonging to the Rhombus 
Matrix, we will use a method called 
Composition, described in the following section.  
 
4  Alternative Methods for 

Obtaining Addressing 
Formulas 

In this section we will analyze two methods: 
composition methods, and coordinate 
transformation method.  
 
 
4.1. Composition Method 
In order to get an addressing formula for a 
Rhombus Matrix we can use the formulas 

 Value to subtract 
from j to get b 

Elements row 
i = 5, column j 

1 = 5 - 4 =  i - ⎡N/2⎤ 

Elements row 
i = 6, column j 

2 = 6 - 4 =  i - ⎡N/2⎤ 

Elements row 
i = 7, column j 

3 = 7 - 4 =  i - ⎡N/2⎤ 

  1  2  3  4  5  6  7 
 1    30    
 2   2 8 9   
 3  11 3 4 7 8  
 4 12 30 2 1 20 3 5 
 5  34 20 43 3 6  
 6   23 10 5   
 7    1    

Row 5 Row 6  Row 7

Row 1 Row 2 Row 3 

Row 4
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corresponding to a CUTM and a CSLITM, since 
a Rhombus Matrix can be seen as a composition 
of these two types of matrices. Consider the 
element (i, j) ∈ Rhombus Matrix. We can 
perform this algorithm:  
  
Pos (i, j):  
if (i ∈ CUTM) 

then 
    To apply formula (1) 

else   
    To apply formula (2) + Total of    
             elements of a CUTM 
end–if 
 

The total of elements of a CUTM is: 
                                                             
⎡ ⎤

∑
=

2/

1

)1-2(
N

h

h  = ⎡ ⎤2/N 2 

 
which is indeed the sum of first  ⎡N/2⎤ odd 

numbers. Therefore the formula is: 
 
Pos(i, j):    (3) 
if (i ∈ CUTM) 

then 
    Pos = i2 - i + j - ⎡N/2⎤ + 1 

else 
    z =  ⎡N/2⎤ 
    w = i - z - 1 
    Pos = w(N - w -1) + j - i + z + z2 
end–if 
 

It is possible to get a straight formula for the 
Rhombus Matrix without using such 
composition technique. This formula is: 
 
Pos(i, j) = i2 - i + j - ⎡N/2⎤ + 1 - ⎣2i/(N + 3)⎦  

* (2i - N - 1)2/2        (4) 
 

where  ⎣x⎦ truncates the decimal part of x. 
 
Due to its complexity we will not show the 

process to get formula (4). In this case, although 
the direct formula (4) is better in the sense that it 
does not require a decision structure (if−else), its 
disadvantage is its complex meaning and the 
difficult process needed to get it.   

A second technique to get addressing 
formulas of some sparse matrices is shown in 
Section 4.2. 

4.2. Coordinate Transformation Method 
Let us now define a Central Lower Triangular 
Matrix (CLTM) of order N, N > 0, and odd. An 
example of this kind of matrix (with N = 7) is 
shown in Figure 7. 
 

 1 2 3 4 5 6 7 
1        
2        
3        
4    1    
5   55 43 66   
6  56 23 10 5 69  
7 23 34 11 19 2 65 11 

Figure 7. Central Lower Triangular Matrix 
 

We can represent the matrix of Figure 7 in a 
1D array by rows as is shown in Figure 8. 

Although a formula for a CLTM can be 
found using a similar method as the one 
presented before, we can indeed get an 
addressing formula for a CLTM making a 
coordinate transformation with the CUTM. 
Table 4 shows this mapping. 

From Table 4 the following mapping can be 
set: 
a) Column ∈ CUTM = Column ∈ CLTM 
b) Row ∈ CUTM = Row ∈ CLTM - ⎣N/2⎦ 
 

Table 4. Mapping between some elements 
CUTM and a CLTM 

 
Therefore the addressing formula of a 

CLTM is: 
 

Pos(i, j) =  (i')2 - i' + j - ⎡N/2⎤ + 1    (5) 
 
with i' = i - ⎣N/2⎦. 
 

 
 

 
Element ∈ 

CLTM 

Element 
corresponding 

in a CUTM 

 
Position  
in the 1D 

array 
(4,4) (1,4) 1 
(5,3) (2,3) 2 
(5,4) (2,4) 3 
(5,5) (2,5) 4 
(6,2) (3,2) 5 
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Figure 8. Representation by rows of a  CLTM 
 

 
5  Conclusions 
Although memory and disk space is cheaper 
everyday, it is important to develop methods 
that using these resources in an efficient way. In 
this paper we presented different types of sparse 
matrices with both their areas of application and 
their representation in a 1D array in order to 
save space. 

This saving of space is possible because we 
store only those elements different from zero 
and because the matrices analyzed have some 
kind of symmetry. The corresponding 
addressing formulas were also deduced. They 
allow access to the stored information. We also 
presented a method to find addressing formulas 
for sparse matrices that are a combination of 
other types of matrices, for example a Rhombus 
Matrix can be seen as a combination of two 
central triangular matrices. Finally, a method of 
coordinate transformation was analyzed. It 
allows addressing formulas of sparse matrices 
that have some kind of displacement (whether in 
x−axis, y−axis, or even in both) with others 
matrices already analyzed, to be obtained. 

In future work, we hope to analyze other 
types of sparse matrices that have some type of 
symmetry. We also want to develop, alternative 
methods, which help obtain addressing formulas 
of sparse matrices. 
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