
Addressing Formulas for Central Triangular Matrices in 1D
Arrays

FRANCISCO MORENO1, SILVIA GUARDATI2, OSVALDO CAIRÓ2 & ROBERTO

FLÓREZ3

 (1) School of Systems Engineering
Facultad de Minas, Universidad Nacional de Colombia

Cra 80 65–223 Bloque M8, Oficina 209
Medellín, COLOMBIA

(2) Department of Computer Science
Instituto Tecnológico Autónomo de México
Río Hondo 1 – 01000 México DF, MÉXICO

 (3) Department of Systems Engineering
Universidad de Antioquia

Calle 67 #53–108 Bloque 21, Oficina 429
Medellín, COLOMBIA

Abstract:– Many of the elements of sparse matrices have zero value. Known examples of these types
of matrices are lower and upper triangular, which arise frequently in the solution of linear equation
systems. Because many of the elements of these matrices are zero, it is advisable to store them –
whether on disk or in memory– in a way that saves space. In this paper sparse matrices called central
triangular are analyzed and mechanisms for their efficient storage by means of 1D arrays are proposed.

Key-Words: sparse matrices, addressing formulas, efficient storage

1 Introduction
Many of the elements of sparse matrices have
zero value. Known examples of these types of
matrices are lower and upper triangular, which
are frequently used for the representation of
linear equation systems [4]. Because many of
the elements of these matrices are zero, it is
advisable to store them –whether on disk or in
memory– in a way that saves space.

The analysis of storage by means of 1D
arrays for lower and upper triangular matrices
and their corresponding addressing formulas has
been made in [2, 5]. In [6] some variants of
lower and upper triangular matrices are also
analyzed. Nevertheless, it is very important to
say that other types of sparse matrices including
those with symmetry have remained unanalyzed.

In this paper we analyze storage by means of
1D arrays of sparse matrices of the central
triangular type, plus one matrix of the rhombus

type. In Section 2, the central triangular matrices
are defined and analyzed. In Section 3, we
analyze the Rhombus Matrix. Section 4 explains
a couple of alternative methods to find
addressing formulas of sparse matrices, and
finally in Section 5 we present conclusions and
suggestions for future work.

2 Central Triangular Matrices

In this section we analyze both Central Upper
Triangular Matrix (CUTM) and Central
Semi−Lower Inverse Triangular Matrix
(CSLITM).

2.1. Central Upper Triangular Matrix
Let us define a Central Upper Triangular
Matrix of order N, N > 0, and odd. Figure 1
shows an example of this kind of matrix, with N
= 7.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

 1 2 3 4 5 6 7
1 30
2 2 8 9
3 11 3 4 7 8
4 12 30 2 1 20 3 5
5
6
7

Figure 1. Central Upper Triangular Matrix

The elements that are outside of the triangle

are zeros and all or most of the elements in the
triangle are different from zero. It must be said
that this kind of matrix can be applied in
different areas with different purposes, for
instance:

a) In statistics in the application of the

triangular distribution.
b) In microstructure for the recognition of

triangular faults –defects– in images of
diverse materials as steel.

c) In fractals in order to represent the
Sierpinski Triangle or Sierpinski Gasket [1],
which even has applications in electrical
circuits and in microscopic patterns, as the
case of DNA.

d) In mathematics in order to represent the
Pascal Triangle.

2.1.1. Representation of a CUTM in a 1D
Array
Because in this kind of matrix a lot of elements
are zero, the choice is to use a 1D array to store
only the values of the triangle in order to save
space. These matrices can be represented in a
1D array by rows, from left to right. In Figure 2,
we represent the matrix shown in Figure 1 using
this mechanism.

Given an element (i, j) belonging to the
triangle, we are interested in determining which
position corresponds to this element in the 1D
array.

The position of element (i, j) is determined
in the following way.

a = Total of elements belonging to rows that
precede in the triangle to element (i, j).
b = Column that occupies the element (i, j) in
row i of the triangle −taking nonempty positions
into account–.

Therefore the position of element (i, j) is
given by: a + b. For instance, if we take element
(3,3) then a = 4 and b = 2 –position 6 in the 1D
array of Figure 2– since the element (3,3) is in
the second occupied column of row 3 of the
triangle. Note that for an element located in row
i, the value a corresponds to the sum of the first
(i - 1) odd numbers.

On the other hand, value b is obtained by:

a) For the element (1,4) of row 1 that is located

in the central column of the matrix (⎡N/2⎤ =
4, the operation ⎡x⎤ rounds up to the next
integer greater than x), a total of 3 units
should be subtracted from its column to get
a corresponding value b.

b) For the elements of row 2: (2,3), (2,4), and
(2,5); 2 units from their respective columns
should be subtracted to get a corresponding
value b.

c) For the elements of row 3: (3,2), (3,3),
(3,4), (3,5), and (3,6); one unit of their
respective columns should be subtracted to
get a corresponding value b.

Finally for the elements of row 4,

subtraction is not necessary. This process can be
seen in Table 1.

Table 1. Summary of the process to get value b
in a CUTM

 Values to substract
from j to get b

Elements row i = 1,
column j

3 = 4 - 1 = ⎡N/2⎤ - i

Elements row i = 2,
column j

2 = 4 - 2 = ⎡N/2⎤ - i

Elements row i = 3,
column j

1 = 4 - 3 = ⎡N/2⎤ - i

Elements row i = 4,
column j

0 = 4 - 4 = ⎡N/2⎤ - i

Therefore:

a = ∑
−

=

1

1

)1-2(
i

h

h = i2 - 2i + 1 = (i - 1)2

b = j - (⎡N/2⎤ - i)

The position for an element (i, j) is given by:

Pos(i, j) = i2 - i + j - ⎡N/2⎤ + 1 (1)

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

Figure 2. Representation by rows of a CUTM

For the element (3,3) belonging to the

matrix shown in Figure 1, formula (1) is applied:

Pos(i, j) = 32 - 3 + 3 - ⎡7/2⎤ + 1 = 6

2.2. Central Semi−Lower Inverse Triangular
Matrix
Let us now define a Central Semi−Lower
Inverse Triangular Matrix of order N, N > 1,
and odd. This type of matrix is used in
applications of microstructure [3]. An example
of this type of matrix (with N = 7) is shown in
Figure 3.

Figure 3. Central Semi−Lower Inverse

Triangular Matrix

2.2.1. Representation of a CSLITM in a 1D
Array
The matrix of Figure 3 can be represented in a
1D array by rows as is shown in Figure 4.

1 2 3 4 5 6 7 8 9
34 20 43 3 6 23 10 5 1

Figure 4. Representation by rows of a CSLITM

Using a method similar to that presented

before, we can determine a formula for this kind
of matrix. Nevertheless, the process to get a and
b is a little more complicated. Let us have an
element (i, j), then a represents the total of
elements belonging to rows that precede in the
triangle of the CSLITM to the element (i, j).

Therefore for the elements of row 5: (5,2),
(5,3), (5,4), (5,5), and (5,6); they have a = 0

because there are no rows in the triangle which
precede them. For the elements of row 6: (6,3),
(6,4), and (6,5); a = 5, and for the element of
row 7: (7,4); a = 5 + 3 = 8. This process can be
seen in Table 2.

Table 2. Summary of the process to get value a

in a CSLITM

Row i ε
CSLITM

ω = Total rows
which precede
to i in the
CSLITM

Values to
add in
order to
get a

5 0 0
6 1 5
7 2 5 + 3

Now let us define t as the total of rows that

separate row i of the central row ⎡N/2⎤ = 4. For
example, for i = 5, t = 1; for i = 6, t = 2, and for i
= 7, t = 3. So we get:

t = i - ⎡N/2⎤

Therefore w = t - 1 (see second column of
Table 2), that is:

w = i - ⎡N/2⎤ - 1

Note that when w = 0, we should add 0
elements. When w = 1 we should add 5
elements, and when w = 2 we should add 5 + 3
elements (see third column of Table 2).
Therefore:

 a = ∑
=

w

h

c
1

Now the nature of component c should be

determined. For the particular case of a matrix
of order N = 7, sum begins with elements of row
5 (5 elements), afterward with the elements of
the row 6 (3 elements), etc. Therefore the total
elements of the first w rows of a CSLITM is
given by the sum going back from odd numbers
starting in N - 2. That is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
30 2 8 9 11 3 4 7 8 12 30 2 1 20 3 5

 1 2 3 4 5 6 7
1
2
3
4
5 34 20 43 3 6
6 23 10 5
7 1

Row 5 Row 6 Row 7

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

 a = ∑
=

w

h

hN
1

)1-)1-2(-(= w(N - w - 1)

On the other hand, value b is obtained:

a) For the elements of row 5: (5,2), (5,3),

(5,4), (5,5), and (5,6); one unit of their
respective columns should be subtracted to
get a corresponding value b.

b) For the elements of row 6: (6,3), (6,4), and
(6,5); 2 units of their respective columns
should be subtracted to get a corresponding
value b.

c) Finally, for the element of the row 7: (7,4);
3 units of their respective columns should
be subtracted to get a corresponding value
b.

This process can be seen in Table 3.

Table 3. Summary of the process to get value b

in a CSLITM

Therefore, b = j - (i - ⎡N/2⎤), then the

position of an element (i, j) will be given by a +
b:

Pos(i, j) = w(N - w - 1) + j - i + ⎡N/2⎤ (2)

3 Rhombus Matrix

Now let us define a Rhombus Matrix of order N,
N > 0, and odd. An example of this type of
matrix (with N = 7) is shown in Figure 5. A
Rhombus Matrix can be seen as a composition
of a CUTM and a CSLITM.

This kind of matrix can be used to represent
a fractal called Peano Curve [7]. Although
based on abstract mathematics, fractals have
practical applications in graphical computation,
digitalization of images, and in the modeling of
complex natural structures.

Figure 5. Rhombus Matrix

3.1. Representation of a Rhombus Matrix
in a 1D Array
The matrix of Figure 6 can be represented in a
1D array by rows as is shown in Figure 7.

1 2 3 4 5 6 7 8 9

30 2 8 9 11 3 4 7 8

10 11 12 13 14 15 16
12 30 2 1 20 3 5

17 18 19 20 21 22 23 24 25
34 20 43 3 6 23 10 5 1

Figure 6. Representation by rows of a Rhombus
Matrix

In this case, to find an addressing formula of

an element (i, j) belonging to the Rhombus
Matrix, we will use a method called
Composition, described in the following section.

4 Alternative Methods for

Obtaining Addressing
Formulas

In this section we will analyze two methods:
composition methods, and coordinate
transformation method.

4.1. Composition Method
In order to get an addressing formula for a
Rhombus Matrix we can use the formulas

 Value to subtract
from j to get b

Elements row
i = 5, column j

1 = 5 - 4 = i - ⎡N/2⎤

Elements row
i = 6, column j

2 = 6 - 4 = i - ⎡N/2⎤

Elements row
i = 7, column j

3 = 7 - 4 = i - ⎡N/2⎤

 1 2 3 4 5 6 7
 1 30
 2 2 8 9
 3 11 3 4 7 8
 4 12 30 2 1 20 3 5
 5 34 20 43 3 6
 6 23 10 5
 7 1

Row 5 Row 6 Row 7

Row 1 Row 2 Row 3

Row 4

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

corresponding to a CUTM and a CSLITM, since
a Rhombus Matrix can be seen as a composition
of these two types of matrices. Consider the
element (i, j) ∈ Rhombus Matrix. We can
perform this algorithm:

Pos (i, j):
if (i ∈ CUTM)

then
 To apply formula (1)

else
 To apply formula (2) + Total of
 elements of a CUTM
end–if

The total of elements of a CUTM is:

⎡ ⎤

∑
=

2/

1

)1-2(
N

h

h = ⎡ ⎤2/N 2

which is indeed the sum of first ⎡N/2⎤ odd

numbers. Therefore the formula is:

Pos(i, j): (3)
if (i ∈ CUTM)

then
 Pos = i2 - i + j - ⎡N/2⎤ + 1

else
 z = ⎡N/2⎤
 w = i - z - 1
 Pos = w(N - w -1) + j - i + z + z2
end–if

It is possible to get a straight formula for the
Rhombus Matrix without using such
composition technique. This formula is:

Pos(i, j) = i2 - i + j - ⎡N/2⎤ + 1 - ⎣2i/(N + 3)⎦

* (2i - N - 1)2/2 (4)

where ⎣x⎦ truncates the decimal part of x.

Due to its complexity we will not show the

process to get formula (4). In this case, although
the direct formula (4) is better in the sense that it
does not require a decision structure (if−else), its
disadvantage is its complex meaning and the
difficult process needed to get it.

A second technique to get addressing
formulas of some sparse matrices is shown in
Section 4.2.

4.2. Coordinate Transformation Method
Let us now define a Central Lower Triangular
Matrix (CLTM) of order N, N > 0, and odd. An
example of this kind of matrix (with N = 7) is
shown in Figure 7.

 1 2 3 4 5 6 7
1
2
3
4 1
5 55 43 66
6 56 23 10 5 69
7 23 34 11 19 2 65 11

Figure 7. Central Lower Triangular Matrix

We can represent the matrix of Figure 7 in a
1D array by rows as is shown in Figure 8.

Although a formula for a CLTM can be
found using a similar method as the one
presented before, we can indeed get an
addressing formula for a CLTM making a
coordinate transformation with the CUTM.
Table 4 shows this mapping.

From Table 4 the following mapping can be
set:
a) Column ∈ CUTM = Column ∈ CLTM
b) Row ∈ CUTM = Row ∈ CLTM - ⎣N/2⎦

Table 4. Mapping between some elements
CUTM and a CLTM

Therefore the addressing formula of a

CLTM is:

Pos(i, j) = (i')2 - i' + j - ⎡N/2⎤ + 1 (5)

with i' = i - ⎣N/2⎦.

Element ∈

CLTM

Element
corresponding

in a CUTM

Position
in the 1D

array
(4,4) (1,4) 1
(5,3) (2,3) 2
(5,4) (2,4) 3
(5,5) (2,5) 4
(6,2) (3,2) 5

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

Figure 8. Representation by rows of a CLTM

5 Conclusions
Although memory and disk space is cheaper
everyday, it is important to develop methods
that using these resources in an efficient way. In
this paper we presented different types of sparse
matrices with both their areas of application and
their representation in a 1D array in order to
save space.

This saving of space is possible because we
store only those elements different from zero
and because the matrices analyzed have some
kind of symmetry. The corresponding
addressing formulas were also deduced. They
allow access to the stored information. We also
presented a method to find addressing formulas
for sparse matrices that are a combination of
other types of matrices, for example a Rhombus
Matrix can be seen as a combination of two
central triangular matrices. Finally, a method of
coordinate transformation was analyzed. It
allows addressing formulas of sparse matrices
that have some kind of displacement (whether in
x−axis, y−axis, or even in both) with others
matrices already analyzed, to be obtained.

In future work, we hope to analyze other
types of sparse matrices that have some type of
symmetry. We also want to develop, alternative
methods, which help obtain addressing formulas
of sparse matrices.

References
[1] Barnsley, M. Fractals Everywhere,

Academic Press Professional, 1993.
[2] Cairó O. & Guardati, S. Data Structures,

McGraw−Hill, 2005.
[3] Göken M. Studies of Metallic Surfaces and

Microstructures with Atomic Force
Microscopy, Digital Instruments Santa
Barbara, Santa Barbara, California, USA,
1998.
http://www.veeco.com/appnotes/AN28_Met
allic_082004_RevA1.pdf

[4] Grossman S. Álgebra Lineal, McGraw Hill,
1996.

[5] Horowitz E. & Sahni S. Fundamentals of
data Structures in Pascal, Computer
Science Press, 1990.

[6] Moreno F. & Flórez R. Fórmulas de

Direccionamiento en Matrices Triangulares,
Journal Facultad de Ingeniería Universidad
de Antioquia. Medellín, 2001.

[7] Ting C. & Liming H. World of Fractal,
Technical Report, National University of
Singapur, 2005.
www.math.nus.edu.sg/aslaksen/gem-
projects/maa/WorldofFractal.pdf

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 55 43 66 56 23 10 5 69 23 34 11 19 2 65 11

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp110-115)

