
 1

A Practical Performance Comparison of Parallel Sorting Algorithms on
Homogeneous Network of Workstations

Haroon Rashid and Kalim Qureshi*

COMSATS Institute of Information Technology, Abbottabad, Pakistan
*Math. and Computer Science Department, Kuwait University, Kuwait

 Three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The
algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. A homogeneous
cluster of workstations has been used to compare the algorithms implemented. The MPI library has been selected to
establish the communication and synchronization between the processors. The time complexity for each parallel sorting
algorithm will also be mentioned and analyzed.

Keywords: Parallel sorting algorithms, performance analysis, network parallel computing.

1. Introduction

Sorting is one of the most important operations in database
systems and its efficiency can influences drastically the
overall system performance. To speed up the performance
of database system, parallelism is applied to the execution
of the data administration operations. The workstations
connected via a local area network allow to speed up the
application processing time [1]. Due to the importance of
distributed computing power of workstations or PCs
connected in a local area network [2] we have been
studying the performance evaluation of various scientific
applications [1-3]. The dedicated parallel machines are used
for parallel database systems and lot of research have
already addressed the issues related to dedicated parallel
machines [4]. Little research has been carried out on
performance evaluations of parallel sorting algorithms on
cluster of workstations.

2. Parallel Sorting Algorithms

In this paper, 3 parallel sorting algorithms will be
implemented and evaluated. These algorithms are:
1. Odd-even transposition sort.
2. Parallel rank sort.
3. Parallel merge sort.

2.1 Odd-Even Transposition

The Odd-even transposition sort algorithm [5,6] starts by
distributing n/p sub-lists (p is the number of processors) to
all the processors. Each processor then sequentially sorts its
sub-list locally. The algorithm then operates by alternating
between an odd and an even phase, hence the name odd-
even. In the even phase, even numbered processors
(processor i) communicate with the next odd numbered
processors (processor i+1). In this communication process,
the two sub-lists for each 2 communicating processes are
merged together. The upper half of the list is then kept in

the higher number processor and the lower half is put in the
lower number processor. Similarly, in the odd phase, odd
number processors (processor i) communicate with the
previous even number processors (i-1) in exactly the same
fashion as in the even phase. It is clear that the whole list
will be sorted in a maximum of p stages. Figure 1 shows an
illustration of the odd-even transposition algorithm.

Figure 1: Odd-even transposition sort, sorting 12 elements
using 4 processors.

Time Complexity of Odd-Even transposition: At first
glance of parallelizing the bubble sort algorithm it seems
that the performance will increase a factor of p. However,
careful analysis of the complexity reveals that it is actually
much more than the stated value. Below is the analysis of
the time complexity for the odd-even transposition sorting
algorithm [5]:

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp276-280)

 2

The performance of the sequential bubble sort

algorithm is:

The performance of the odd-even transposition

algorithm is:

2

2
2

2/

1

2/1

)(
222

)1/(/
....321

pbwhere

bno
p

n
p

npnpn
p
ni

pn

i

=

=−=
−

=+++=∑
=

This means that theoretically speaking the time will reduce
by 1/p2.

2.2 Parallel Merge Sort

The merge sort algorithm uses a divide and conquer
strategy to sort its elements [7].The list is divided into 2
equally sized lists and the generated sub-lists are further
divided until each number is obtained individually. The
numbers are then merged together as pairs to form sorted
lists of length 2. The lists are then merged subsequently
until the whole list is constructed. This algorithm can
parallelized by distributing n/p elements (where n is the list
size and p is the number of processors) to each slave
processor. The slave can sequentially sort the sub-list (e.g.
using sequential merge sort) and then return the sorted sub-
list to the master. Finally, the master is responsible of
merging all the sorted sub-lists into one sorted list. Figure 2
shows an illustration of the parallel merge sort algorithm.

Figure 2: Parallel merge sort algorithm, sorting 12 elements
using 4 processors.

Time Complexity of parallel merge sort: Sequential
merge sort time complexity is O (n log n). when
parallelizing the merge sort algorithm the time complexity
reduces to O(n/p log n/p) as stated in [5].

2.3 Parallel Rank Sort

In the sequential rank sort algorithm (also known as
enumeration sort), each element in the list to be sorted is
compared against the rest of the elements to determine its
rank amongst them [8]. This sequential algorithm can be
easily parallelized by enabling the master processor to
distribute the list amongst all the processors and assigning
each slave processor n/p elements (where n is the list size
and p is the number of processors). Each processor is
responsible of computing the rank of all the n/p elements.
The ranks are then returned from the slaves to the master
who in turn is responsible of constructing the whole sorted
list (see figure 3).

Figure 3: Parallel sort algorithm sorting 12 elements using 4
processors.

Time Complexity of parallel merge sort: In the sequential
version of the rank sort algorithm. Each element is
compared to all the other elements. The complexity of the
algorithm can be expressed as:

When parallelizing this algorithm, it can be easily seen that
the complexity reduces to:

This means that if n number of processors is used then the
sorting time will become almost linear O (n).

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp276-280)

 3

3 Implementation

Each of the parallel algorithms stated above will be
compared to its sequential implementation and
evaluated in terms of its overall execution time,
speedup and efficiency. The speedup is used to
measure the gain of parallelizing an application
versus running the application sequentially and can
be expressed as:

Speed = Execution time using one processor /

Execution time using p processor (1)
On the other hand, the efficiency is used to indicate how
well the multiple processors are utilized in executing the
application and can be expressed as:
Efficiency = Execution time using p processor /

Total number of processor (2)

The C programming language used to develop the sorting
algorithms. The MPI library routines used to handle the
communication and synchronization between all the
processors. The performance of the sorting algorithms was
evaluated on a homogeneous cluster of SUN workstations,
with SUNOS operating system. Each sorting algorithm
performance was evaluated for 2, 4, 6, 8, 10, 12 machines.
The speedup and efficiency will be calculated based on the
previous records. An array of 10,000 random integers was
used to test the parallel algorithms.

3. Results and Discussions

Odd-Even Transposition: Figure 4 shows the total
execution time for the odd-even transposition sorting
algorithm. It can easily be seen that parallel algorithm is by
far faster than the sequential bubble sort algorithm. The
speed up for the odd-even transposition sorting algorithm is
also displayed in figure 5 along with the efficiency in figure
6.

Figure 4: Total execution time of the odd-even
transposition sort algorithm

Parallel Merge Sort: Parallel merge sort is one of the most
efficient algorithms for sorting elements. In figure 7 an
illustration of the total execution time of the algorithm is
displayed. It shows that sorting using up to 8 processors is
helpful in reducing the total time required to sort the
elements. However, increasing the processors to more than
8 processors will result in lower performance compared to
the sequential merge sort algorithm as shown in figure 7.
This of course is due to the communication overhead that
occurs between the processors to merge the result in to one
sorted list. The speedup and efficiency of the parallel merge
sort algorithm are displayed in figure 8 and figure 9
respectively.

Figure 5: Speedup of the odd-even transposition sort
algorithm

Figure 6: Efficiency of the odd-even transposition sort
algorithm

Parallel RankSort: Running the parallel rank sort
algorithm on 2 processors to sort 10,000 integers is

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp276-280)

 4

slower than the sequential implementation due to the
communication overhead needed to distribute the whole
unsorted list to all the processors. However, the benefit of
parallelization kicks in after increasing the number of
processors. Using 2 processors run parallel rank sort should
increase the performance of the algorithm conditioned the
number of elements to be sorted are greater than 10,000
elements (e.g. 1,000,000 elements).

Figure 7: Total execution time of the parallel merge sort
algorithm.

Figure 8: Speedup of the parallel merge sort algorithm.

The limitation of the parallel rank sort is the memory it
requires in order to sort its elements. Each processor needs
a copy of the whole unsorted list for it to rank its portion of
elements. Another memory requirement is to construct an
array proportional to the unsorted list size to enable the
algorithm of sorting lists with repeated elements. The

parallel rank sort algorithm can be considered as a memory
intensive algorithm. Figure 10 shows the total execution
time for the parallel sort algorithm compared to its
sequential implementation. When this algorithm runs on 6
processors it can improve the total execution time by a
factor slightly greater than 2. However, lot of
communication overheads and data transfer is required
which prevents us from increasing the performance beyond
this factor. The speedup for the parallel rank sort algorithm
is also displayed in figure 11 along with the efficiency in
figure 12.

Figure 9: Efficiency of the parallel merge sort algorithm.

Figure 10: Total execution time of the parallel rank sort
algorithm.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp276-280)

 5

4. Conclusions

Three parallel sorting algorithms have been developed and
executed on a homogeneous cluster of machines. The
parallel algorithms implemented are the odd even
transposition sorting algorithm, the parallel rank sort
algorithm and the parallel merge sort algorithm. Figure 13
shows a comparison between the 3 parallel sorting
algorithms when sorting 10,000 integers on 2, 4, 6, 8, 10,
and 12 workstations.

Figure 11: Speedup of the parallel rank sort algorithm.

Figure 12: Efficiency of the parallel rank sort algorithm.

From figure 13 it is obvious that the parallel merge sort is
the fastest sorting algorithm followed by the odd-even
transposition sorting algorithm then the parallel rank sorting
algorithm. The parallel rank sort algorithm is the slowest
algorithm because each processor needs its own copy of the
unsorted list thus, in turn, raises a serious communication
overhead. A solution has also been developed and
successfully tested to allow parallel rank sort for sorting a
list of integers with repeated elements. The odd-even

sorting algorithm comes in second place because of the
time it takes to initially sort its elements locally in each
processor using sequential bubble sort which has a
performance of)(2nO . The odd-even transposition sorting
algorithm can be improved by adapting a faster sequential
sorting algorithm to sort the elements locally for each
processor in the order of)log(nnO (e.g.
sequential merge sort or quick sort).

Figure 13: A comparison of the total execution time
required for sorting 10,000 integers using parallel merge
sort, parallel rank sort and odd-even transposition.

References
--
[1] Kalim Qureshi and Haroon Rashid,“A Practical Performance
Comparison of Parallel Matrix Multiplication Algorithms on
Network of Workstations.”, IEE Transaction Japan, Vol. 125, No.
3, 2005.
[2] Kalim Qureshi and Haroon Rashid,“ A Practical Performance
Comparison of Two Parallel Fast Fourier Transform Algorithms
on Cluster of PCS”, IEE Transaction Japan, Vol. 124, No. 11,
2004.
[3] Kalim Qureshi and Masahiko Hatanaka, “A Practical
Approach of Task Partitioning and Scheduling on Heterogeneous
Parallel Distributed Image Computing System,” Transaction of
IEE Japan, Vol. 120-C, No. 1, Jan., 2000, pp. 151-157.
[4] K. Sado, Y. Igarashi, Some Parallel Sorts on a Mesh-
Connected Processor Array and Their Time Efficiency, Journal of
Parallel and Distributed Computing, 3, pp. 398-410, 1999.
[4] D. Bitton, D. DeWitt, D.K. Hsiao, J. Menon, A Taxonomy of
Parallel Sorting, ACM Computing Surveys, 16,3,pp. 287-318,
September 1984.
[5]. Song, Y.D., Shirasi, B. A Parallel Exchange Sort Algorithm.
South Methodist University, IEEE 1989.
[6] B.R. lyer, D.M. Dias, System Issues in Parallel Sorting for
Database Systems, Proc. Int. Conference on Data Engineering, pp.
246-255, 2003.
[7] F. Meyer auf der Heide, A Wigderson, The Complexity of
Parallel Sorting, SIAM Journal of Computing, 16, 1, pp. 100-107,
February 1999.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp276-280)

