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Abstract: - The paper presents a new approach for reachability analysis. This is based on analysis purposes 
that are established by an analyser expert. The analysis purposes address system specification parts that 
may be ‘suspected’ of presenting non-reachable states and thus the analysis is especially focused on. Such 
information about ‘suspicious’ specification parts to be checked is based on special knowledge about the 
system code and behaviour. The approach is characterized by its usefulness comparatively to other 
complex and theoretical approaches, for instance, to those based on petri nets. We describe the analysis 
purposes and explain how reachability analysis can be performed using this concept. 
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1   Introduction 
Reachability analysis is very important in 
verification and synthesis of various systems such as 
control systems, communicating systems and 
communication protocols, computer programming 
(concerning compilers) etc. In computer 
programming, for instance, unreachable code (dead 
code), consists of one or more statements or entire 
routines that will never be accessed [1]. These will 
never be executed regardless of the values of 
variables and other conditions at run time (s. Fig.1). 

 
… 
while (condition) { 
  do branch_1 
  continue; 
  do branch_2 
} 
… 

unreachable code 

 
Fig.1: Example of an unreachable code 

 
     Most languages like C++ allow unreachable code. 
According to [1] unreachable code may result from 
many sources including a common programmer 
practice to temporarily disable code. However, these 
temporary intended changes often take their way to 
final and release versions. Other causes of 
unreachable code consist of redundant checking of 
exception conditions, and debugging code that in fact 
should be removed. Thus, whole routines can be 
unreachable code if they are defined but are no 
longer called, or are called only from unreachable 
code. 

     Unreachable code may be the source of logical 
errors due to changes in the assumptions and 
environment of the program. This implies 
unnecessary work for the compiler and may result in 
code bloat [1]. 
     Reachability analysis has received a lot of 
attention since decades in almost computing areas. 
Many reachability methods and approaches have 
been proposed to deal more efficiently with this 
problem [2] [3] [4] [5]. Due to the non-decidability 
character of this problem, these approaches are still 
applicable only under some assumptions on the 
given system. In addition, they usually deal with a 
specific description model. 
     Reachability analysis has proved to be one of the 
most effective methods in verifying correctness of 
communication protocols and distributed systems 
based on the state transition model [6] [7]. 
Consequently, many protocol verification tools have 
been built based on the method of reachability 
analysis. Nevertheless, it is also well known that 
state space explosion is the most severe limitation to 
the applicability of this method. Note that, for 
state/transition-based models reachability refers to 
the problem of computing bounds on the set of states 
that can be reached by the given system. 
     Our present paper is to serve one main purpose: 
give a new general way to deal with the reachability 
analysis problem by targeting given system parts that 
may be ‘vulnerable’ for reachability. We are inspired 
from various methodologies and frameworks 
developed for protocols and open communicating 
systems [8]. Because the experience has proven the 
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practical limit of many theoretical approaches that 
check at once the system. This is due to many 
economical and feasibility factors: very high cost, 
time-consume, lot of computer resources, etc. In 
addition, such theoretical approaches, refer usually to 
theoretical concepts that require appropriate 
knowledge to be understandable and traceable. 
However, the practitioners do not necessarily dispose 
of such knowledge. 
     The paper is organised as follows. In Section 2 
we explain what we mean with ‘analysis purposes’. 
Section 3 presents the principle of the analysis 
approach. An example that is based EFSMs 
(extended finite state machines) is given in Section 
4. Finally, Section 5 concludes the paper and gives 
an outlook of futures works. 
 
 
2   Analysis Concepts 
The main concepts that relate to the analysis 
approach are: specification describing a set of system 
requirements, a set of analysis purposes and a set of 
analysis cases. The system requirements are 
included in the specification and indicate the 
expected behaviour of the SUA (system under 
analysis). Each analysis case is related to a precise 
analysis purpose.  
     System requirements are requirements on the 
behaviour of conforming implementations (dynamic 
requirements). These can be represented as a set of 
requirements RS={r1, r2, …, rn}. Thus, ri∈ RS 
represents a conformance requirement to which an 
analysis purpose relates. A SUA U is conform 
(reachable) to the specification S if U satisfies all 
conformance requirements in RS, i.e. ∀ri∈RS: (U sat 
ri). In this approach the conformance is defined as a 
relationship because the specified analysis verdicts 
are based principally on the satisfaction by U of the 
conformance requirements given in the analysis 
purposes. 
     An analysis purpose is defined as a 
(un)formalised description of a closely defined 
analysis ground which relates to a single 
conformance requirement. That is, the set of analysis 
purposes AP usually represents as subset of the set of 
conformance requirements RS: AP⊆RS. 
     An analysis case relates to a given analysis 
method and is consisting of the following: 
 

• An analysis purpose 
• A preamble 
• An analysis body 
• A postamble 
• Analysis verdicts 

The preamble is a trace (event sequence) that brings 
U from the initial sate to the requirement aimed by 
the analysis purpose. An analysis body represents the 
requirement to be analysed and addressed by the 
analysis purpose. A postamble is a trace that brings 
back U from the actual (un)reached state after 
performing the analysis on the analysis body to the 
initial state. Analysis verdicts are statements of 
‘reached’ or ‘unreached’ that have to be specified for 
the analysis events of the analysis case and that 
assess the conformance of U regarding the analysis 
purpose. For an analysis event, the analysis verdict is 
associated ‘pass’ if it is conform to the analysis 
purpose and ‘fail’ if it doesn’t. 
 
 
3   The Approach 
First, we explain how one does deduce the analysis 
components introduced in the previous section. 
 
 
3.1 Analysis case 
An analysis case AC is a 5-Tupel AC=<A, P, B, M, 
V> that is derived from the expected (reachable) 
behaviour S and the set of analysis purposes AP. 
 
3.2 Analysis purposes 
As indicated above, an analysis purpose A designates 
a single requirement ri of the system under analysis 
SUA U. The specification of the set of analysis 
purposes AP depends on the nature of the used 
model for the specification of U and S. U is the 
system to be analysed that may presents unreachable 
parts and S is the specification providing the initially 
expected system behaviour, i.e. whose all 
specification parts are reachable. It is supposed that 
U and S are using the same specification model, e.g. 
state/transition based model or C++-Code etc. 
 
3.2.1   Example 
“after the sequence of transitions σ U must reach 
state s” etc. It is supposed again that the same 
state/transition model is used. 
 
3.3 Preamble 
A preamble B is a trace (an event sequence) that 
brings U from its initial state to a given state or part. 
It is supposed that the complete traversed trace 
staring at the initial is executable and the 
intermediate parts or states until the edge are 
reachable. 
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3.3.1   Example 
Assuming a state/transition model for U and S. We 
denote ss ′⎯→⎯* as sequence of transitions starting 
at the state s an ending at state s’. A transition ti is a 
5-tuple of the form ti = <s1i, ii, pi, oi, s2i> where s1i is 
the starting state (the edge) and s2i the next state (the 
tail) of the transition, ii the input event, pi the 
enabling condition (predicate) of the transition and oi 
the output event after performing the transition. Note 
that all these components may depend on a context 
ci, i.e. a subset of variables and parameters. Thus, the 
state s’ of the preamble given above designates the 
state from which the analysis starts, i.e. the 
conformance requirement targeted by the analysis 
purpose. In this case all enabling predicates pi of the 
state transitions that trace the preamble must ‘fire’ 
(be fulfilled).  
 
3.4 Analysis body 
An analysis body B consists of a single conformance 
requirement that is addressed by an analysis purpose. 
This presents a ‘suspicious’ part (behaviour) of U for 
unreachability. Thus, the analysis body should start 
at the edge part reached by the preamble. While the 
behaviour of U regarding reachability is assumed to 
be correct for preamble, this is still open for the 
analysis body B. Thus, U may or may not reach the 
part aimed by the analysis purpose. 
 
3.4.1   Example 
Assuming again a state/transition-based U and S, the 
analysis body may consist of a single transition 
whose ‘firing’ must be proven. This means, 
regarding the analysis purpose, one must state 
whether a given next state can be reached starting 
from the state to which the preamble leads. This can 
be performed by proving the satisfaction of the 
enabling predicate of the transition with the same 
context as for the preamble. Note the edge of this 
transition represents the state reached by the 
preamble. 
 
3.5 Postamble 
A postamble M is trace that brings U from the 
reached edge after performing the analysis on the 
analysis body to the initial state. This assumes that 
the initial state is always reachable to perform 
following analysis cases on U, .i.e. all enabling 
predicates of the trace bringing back U to its initial 
state fire. In both cases reachability or unreachabilty 
this should be possible. 
 
 
 
 

 
3.5.1   Example 
Given a reached1 state s after performing the analysis 
body for U. We assume here also a state/transition 
model for both U and S. It always possible to bring U 
back to its initial state s0 through a trace consisting 
of one or more transitions whose edge is s and tail s0. 
It is assumed that the enabling predicates of all these 
transitions fire. 
 
3.6 Analysis Verdicts 
The analysis verdicts V are assignments for the 
analysis case depending on the analysis purpose. For 
analysed event of the analysis body, it is indicated 
whether U reaches the required part or state 
(specified with ‘reached’) or not (specified with 
‘unreached’. Depending on these specifications, an 
analysis verdict will be assigned to the given analysis 
case: ‘pass’ if performing the analysis case is 
successful, else ‘fail’. The verdicts will be used in 
the statement of the reachability or not for the given 
system under analysis U. 
 
 
4   Example 
We assume in this example a state/transition-based 
model EFSM (extended finite state machines) for U 
and S. The problem of reachability / unreachability 
analysis consists of the detection of non-executable 
parts. Thus, deciding whether a given EFSM 
modelling a function for a given system component 
contains non-executable transitions and detecting 
them if they exist. 
     In addition to the statement of the reachability for 
a given U, the detection of non-executable branches 
allows also to deduce a specification whose all 
transitions are executable in addition. This is 
obtained by eliminating all non-executable 
transitions and their descendants. We can find all 
non-executable branches in a EFSM as follows. A 
branch s→s’ in the EFSM is a non-executable and 
thus, the system part with edge s’ is unreachable if 
the two following conditions are fulfilled: 
 
 ∃ x1, …, xk [δs(x1,…,xk)] 
 ¬(∃ x1, …, xk [δs’ (x1,…,xk)]) 

 
     where 

• δs(x1,…,xk) represents the conjunction of all 
enabling predicates for the context x1, …, xk 
from the initial state s0 until the state s. 

                                                 
1 This may be the same state in the case of non-reachable 
state, i.e. tail is the same edge since no transition is 
possible. 
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These represent the enabling predicates of 
the preamble. 

• ¬() denotes the negation of the expression 
between the parentheses. 

 
     In other words, the branch s→s’ given above 
represents the analysis body aimed by the analysis 
purpose. 
     The problem for deciding, whether a given branch 
of a system under analysis EFSM is non-executable 

(the tail is unreachable) is resolvable under certain 
limiting assumptions. 
     If the domains of state variables are finite and 
countable it is always possible to solve the problem 
analytically or by simulation. In fact, for each state 
of the EFSM it is possible to assess whether there is 
a context (variables assignment) for which the 
predicates are not satisfied. 
 
 

 
 

s1 

s2 

s3 

s4 

s5 

s0 

?s.z,[z<x-1]: 
!c.x 

?c.x,[x<0]: 
!a.0 

?c.x,[x<5]: 
!c.2 

?c.z,[z>x+1]: 
!a.z 

?s.x,[z=x]: 
!c.x 

?c.z,[z=x]: 
!a.z 

?c.z,[z<x-1]: 
!a.z 

?c.y,[y<=-1]: 
!a.x 

?c.x,[(y>=0) &(x=y)]: 
!c.x 

?c.y,[(y>=8) &(y<=8)]: 
!a.y 

?s.x,[(x>=8) &(x<=8)]: 
!s.x 

?c.z,[z<x-1]: 
!a.z 

 
 

Fig.2: Example 
 

 
     For example, for the state s3 and s4 in Fig.2, we 
can show that 
 
 ∃ x, y, z [ψs3(x, y, z)] 

= x, y, z [((x>=8) or (x<=8)) and ((y>=8) or 
(y<=8)) and (y<=1) and (z<x-1)] 
=true 

 ∃ x, y, z [ψs4(x,y,z)] 
= x, y, z [((x>=8) or (x<=8)) and ((y>=8) or 
(y<=8)) and (y<=1) and (z<x-1) and (x=z)] 
=false 

 
     In this simple example, we suppose that the 
variables domains are of type integer, finite and 
countable. We can easily verify that s3 is reachable 
from the initial state, but the branch s3→s4 is non-
executable and the thus the system part with edge s4 
is unreachable. 
     For convenience, an event of the EFSM (s. 
Fig.2) is represented as $g.e. The symbol $ denotes 
either the input symbol ‘?’ or the output symbol ‘!’. 
The letter g represents the gate name, that is, the 
name of the component sending the event or 

receiving it. For example, the letters s, c and a 
designate sensors, the controller and actuators, 
respectively. 
 
 
5   Conclusion 
In this paper we presented a new approach for 
reachability analysis that in contrast common 
approaches is purpose-directed. In addition to its 
general aim, it needs less analysis efforts and resource 
requirements and thus lower costs. Indeed, the 
analysis is focused only on system parts assumed to be 
‘vulnerable’ for reachability. 
     The principle of ‘purpose-directed’ adopted in this 
approach can be also extended and used to check other 
system properties like deadlock, livelock, safety, 
partial validation and correctness etc. 
     In future works, we are planning to deal in more 
details with the principle presented here, especially the 
formalisation of a relationship between the analysis 
purposes and the system parts addressed by it 
depending on the used model. In addition, we intend 
to apply the principle for concrete cases, in particular 
for compilers as mentioned in Section 1. 
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