
A Purpose-Directed Reachability Analysis Approach

ABDELAZIZ GUERROUAT, HARALD RICHTER
Department of Computer Science

Clausthal University of Technology
Julius-Albert-Str. 4

D-38678 Clausthal-Zellerfeld
GERMANY

Abstract: - The paper presents a new approach for reachability analysis. This is based on analysis purposes
that are established by an analyser expert. The analysis purposes address system specification parts that
may be ‘suspected’ of presenting non-reachable states and thus the analysis is especially focused on. Such
information about ‘suspicious’ specification parts to be checked is based on special knowledge about the
system code and behaviour. The approach is characterized by its usefulness comparatively to other
complex and theoretical approaches, for instance, to those based on petri nets. We describe the analysis
purposes and explain how reachability analysis can be performed using this concept.

Keyword: - Formal methods, reachability analysis, state/transition-based systems, system verification and
validation

1 Introduction
Reachability analysis is very important in
verification and synthesis of various systems such as
control systems, communicating systems and
communication protocols, computer programming
(concerning compilers) etc. In computer
programming, for instance, unreachable code (dead
code), consists of one or more statements or entire
routines that will never be accessed [1]. These will
never be executed regardless of the values of
variables and other conditions at run time (s. Fig.1).

…
while (condition) {
 do branch_1
 continue;
 do branch_2
}
…

unreachable code

Fig.1: Example of an unreachable code

 Most languages like C++ allow unreachable code.
According to [1] unreachable code may result from
many sources including a common programmer
practice to temporarily disable code. However, these
temporary intended changes often take their way to
final and release versions. Other causes of
unreachable code consist of redundant checking of
exception conditions, and debugging code that in fact
should be removed. Thus, whole routines can be
unreachable code if they are defined but are no
longer called, or are called only from unreachable
code.

 Unreachable code may be the source of logical
errors due to changes in the assumptions and
environment of the program. This implies
unnecessary work for the compiler and may result in
code bloat [1].
 Reachability analysis has received a lot of
attention since decades in almost computing areas.
Many reachability methods and approaches have
been proposed to deal more efficiently with this
problem [2] [3] [4] [5]. Due to the non-decidability
character of this problem, these approaches are still
applicable only under some assumptions on the
given system. In addition, they usually deal with a
specific description model.
 Reachability analysis has proved to be one of the
most effective methods in verifying correctness of
communication protocols and distributed systems
based on the state transition model [6] [7].
Consequently, many protocol verification tools have
been built based on the method of reachability
analysis. Nevertheless, it is also well known that
state space explosion is the most severe limitation to
the applicability of this method. Note that, for
state/transition-based models reachability refers to
the problem of computing bounds on the set of states
that can be reached by the given system.
 Our present paper is to serve one main purpose:
give a new general way to deal with the reachability
analysis problem by targeting given system parts that
may be ‘vulnerable’ for reachability. We are inspired
from various methodologies and frameworks
developed for protocols and open communicating
systems [8]. Because the experience has proven the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp105-109)

practical limit of many theoretical approaches that
check at once the system. This is due to many
economical and feasibility factors: very high cost,
time-consume, lot of computer resources, etc. In
addition, such theoretical approaches, refer usually to
theoretical concepts that require appropriate
knowledge to be understandable and traceable.
However, the practitioners do not necessarily dispose
of such knowledge.
 The paper is organised as follows. In Section 2
we explain what we mean with ‘analysis purposes’.
Section 3 presents the principle of the analysis
approach. An example that is based EFSMs
(extended finite state machines) is given in Section
4. Finally, Section 5 concludes the paper and gives
an outlook of futures works.

2 Analysis Concepts
The main concepts that relate to the analysis
approach are: specification describing a set of system
requirements, a set of analysis purposes and a set of
analysis cases. The system requirements are
included in the specification and indicate the
expected behaviour of the SUA (system under
analysis). Each analysis case is related to a precise
analysis purpose.
 System requirements are requirements on the
behaviour of conforming implementations (dynamic
requirements). These can be represented as a set of
requirements RS={r1, r2, …, rn}. Thus, ri∈ RS
represents a conformance requirement to which an
analysis purpose relates. A SUA U is conform
(reachable) to the specification S if U satisfies all
conformance requirements in RS, i.e. ∀ri∈RS: (U sat
ri). In this approach the conformance is defined as a
relationship because the specified analysis verdicts
are based principally on the satisfaction by U of the
conformance requirements given in the analysis
purposes.
 An analysis purpose is defined as a
(un)formalised description of a closely defined
analysis ground which relates to a single
conformance requirement. That is, the set of analysis
purposes AP usually represents as subset of the set of
conformance requirements RS: AP⊆RS.
 An analysis case relates to a given analysis
method and is consisting of the following:

• An analysis purpose
• A preamble
• An analysis body
• A postamble
• Analysis verdicts

The preamble is a trace (event sequence) that brings
U from the initial sate to the requirement aimed by
the analysis purpose. An analysis body represents the
requirement to be analysed and addressed by the
analysis purpose. A postamble is a trace that brings
back U from the actual (un)reached state after
performing the analysis on the analysis body to the
initial state. Analysis verdicts are statements of
‘reached’ or ‘unreached’ that have to be specified for
the analysis events of the analysis case and that
assess the conformance of U regarding the analysis
purpose. For an analysis event, the analysis verdict is
associated ‘pass’ if it is conform to the analysis
purpose and ‘fail’ if it doesn’t.

3 The Approach
First, we explain how one does deduce the analysis
components introduced in the previous section.

3.1 Analysis case
An analysis case AC is a 5-Tupel AC=<A, P, B, M,
V> that is derived from the expected (reachable)
behaviour S and the set of analysis purposes AP.

3.2 Analysis purposes
As indicated above, an analysis purpose A designates
a single requirement ri of the system under analysis
SUA U. The specification of the set of analysis
purposes AP depends on the nature of the used
model for the specification of U and S. U is the
system to be analysed that may presents unreachable
parts and S is the specification providing the initially
expected system behaviour, i.e. whose all
specification parts are reachable. It is supposed that
U and S are using the same specification model, e.g.
state/transition based model or C++-Code etc.

3.2.1 Example
“after the sequence of transitions σ U must reach
state s” etc. It is supposed again that the same
state/transition model is used.

3.3 Preamble
A preamble B is a trace (an event sequence) that
brings U from its initial state to a given state or part.
It is supposed that the complete traversed trace
staring at the initial is executable and the
intermediate parts or states until the edge are
reachable.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp105-109)

3.3.1 Example
Assuming a state/transition model for U and S. We
denote ss ′⎯→⎯* as sequence of transitions starting
at the state s an ending at state s’. A transition ti is a
5-tuple of the form ti = <s1i, ii, pi, oi, s2i> where s1i is
the starting state (the edge) and s2i the next state (the
tail) of the transition, ii the input event, pi the
enabling condition (predicate) of the transition and oi
the output event after performing the transition. Note
that all these components may depend on a context
ci, i.e. a subset of variables and parameters. Thus, the
state s’ of the preamble given above designates the
state from which the analysis starts, i.e. the
conformance requirement targeted by the analysis
purpose. In this case all enabling predicates pi of the
state transitions that trace the preamble must ‘fire’
(be fulfilled).

3.4 Analysis body
An analysis body B consists of a single conformance
requirement that is addressed by an analysis purpose.
This presents a ‘suspicious’ part (behaviour) of U for
unreachability. Thus, the analysis body should start
at the edge part reached by the preamble. While the
behaviour of U regarding reachability is assumed to
be correct for preamble, this is still open for the
analysis body B. Thus, U may or may not reach the
part aimed by the analysis purpose.

3.4.1 Example
Assuming again a state/transition-based U and S, the
analysis body may consist of a single transition
whose ‘firing’ must be proven. This means,
regarding the analysis purpose, one must state
whether a given next state can be reached starting
from the state to which the preamble leads. This can
be performed by proving the satisfaction of the
enabling predicate of the transition with the same
context as for the preamble. Note the edge of this
transition represents the state reached by the
preamble.

3.5 Postamble
A postamble M is trace that brings U from the
reached edge after performing the analysis on the
analysis body to the initial state. This assumes that
the initial state is always reachable to perform
following analysis cases on U, .i.e. all enabling
predicates of the trace bringing back U to its initial
state fire. In both cases reachability or unreachabilty
this should be possible.

3.5.1 Example
Given a reached1 state s after performing the analysis
body for U. We assume here also a state/transition
model for both U and S. It always possible to bring U
back to its initial state s0 through a trace consisting
of one or more transitions whose edge is s and tail s0.
It is assumed that the enabling predicates of all these
transitions fire.

3.6 Analysis Verdicts
The analysis verdicts V are assignments for the
analysis case depending on the analysis purpose. For
analysed event of the analysis body, it is indicated
whether U reaches the required part or state
(specified with ‘reached’) or not (specified with
‘unreached’. Depending on these specifications, an
analysis verdict will be assigned to the given analysis
case: ‘pass’ if performing the analysis case is
successful, else ‘fail’. The verdicts will be used in
the statement of the reachability or not for the given
system under analysis U.

4 Example
We assume in this example a state/transition-based
model EFSM (extended finite state machines) for U
and S. The problem of reachability / unreachability
analysis consists of the detection of non-executable
parts. Thus, deciding whether a given EFSM
modelling a function for a given system component
contains non-executable transitions and detecting
them if they exist.
 In addition to the statement of the reachability for
a given U, the detection of non-executable branches
allows also to deduce a specification whose all
transitions are executable in addition. This is
obtained by eliminating all non-executable
transitions and their descendants. We can find all
non-executable branches in a EFSM as follows. A
branch s→s’ in the EFSM is a non-executable and
thus, the system part with edge s’ is unreachable if
the two following conditions are fulfilled:

 ∃ x1, …, xk [δs(x1,…,xk)]
 ¬(∃ x1, …, xk [δs’ (x1,…,xk)])

 where

• δs(x1,…,xk) represents the conjunction of all
enabling predicates for the context x1, …, xk
from the initial state s0 until the state s.

1 This may be the same state in the case of non-reachable
state, i.e. tail is the same edge since no transition is
possible.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp105-109)

These represent the enabling predicates of
the preamble.

• ¬() denotes the negation of the expression
between the parentheses.

 In other words, the branch s→s’ given above
represents the analysis body aimed by the analysis
purpose.
 The problem for deciding, whether a given branch
of a system under analysis EFSM is non-executable

(the tail is unreachable) is resolvable under certain
limiting assumptions.
 If the domains of state variables are finite and
countable it is always possible to solve the problem
analytically or by simulation. In fact, for each state
of the EFSM it is possible to assess whether there is
a context (variables assignment) for which the
predicates are not satisfied.

s1

s2

s3

s4

s5

s0

?s.z,[z<x-1]:
!c.x

?c.x,[x<0]:
!a.0

?c.x,[x<5]:
!c.2

?c.z,[z>x+1]:
!a.z

?s.x,[z=x]:
!c.x

?c.z,[z=x]:
!a.z

?c.z,[z<x-1]:
!a.z

?c.y,[y<=-1]:
!a.x

?c.x,[(y>=0) &(x=y)]:
!c.x

?c.y,[(y>=8) &(y<=8)]:
!a.y

?s.x,[(x>=8) &(x<=8)]:
!s.x

?c.z,[z<x-1]:
!a.z

Fig.2: Example

 For example, for the state s3 and s4 in Fig.2, we
can show that

 ∃ x, y, z [ψs3(x, y, z)]

= x, y, z [((x>=8) or (x<=8)) and ((y>=8) or
(y<=8)) and (y<=1) and (z<x-1)]
=true

 ∃ x, y, z [ψs4(x,y,z)]
= x, y, z [((x>=8) or (x<=8)) and ((y>=8) or
(y<=8)) and (y<=1) and (z<x-1) and (x=z)]
=false

 In this simple example, we suppose that the
variables domains are of type integer, finite and
countable. We can easily verify that s3 is reachable
from the initial state, but the branch s3→s4 is non-
executable and the thus the system part with edge s4
is unreachable.
 For convenience, an event of the EFSM (s.
Fig.2) is represented as $g.e. The symbol $ denotes
either the input symbol ‘?’ or the output symbol ‘!’.
The letter g represents the gate name, that is, the
name of the component sending the event or

receiving it. For example, the letters s, c and a
designate sensors, the controller and actuators,
respectively.

5 Conclusion
In this paper we presented a new approach for
reachability analysis that in contrast common
approaches is purpose-directed. In addition to its
general aim, it needs less analysis efforts and resource
requirements and thus lower costs. Indeed, the
analysis is focused only on system parts assumed to be
‘vulnerable’ for reachability.
 The principle of ‘purpose-directed’ adopted in this
approach can be also extended and used to check other
system properties like deadlock, livelock, safety,
partial validation and correctness etc.
 In future works, we are planning to deal in more
details with the principle presented here, especially the
formalisation of a relationship between the analysis
purposes and the system parts addressed by it
depending on the used model. In addition, we intend
to apply the principle for concrete cases, in particular
for compilers as mentioned in Section 1.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp105-109)

References
[1] Wikipedia®, A registered trademark of the

Wikimedia Foundation, Inc.:
http://en.wikipedia.org/

[2] J. Espraza and C. Schröter. Reachability
Analysis Using Net Unfolding. Fundamenta
Informaticae, 2002.

[3] K. Heljanko. Using Logic Programs with Stable
Model Semantics to Solve Deadlock and
Reachability Problems for 1-Safe Petri Nets.
TACAS’99.

[4] V. Khomenko and M. Kounty. LP Deadlock
Checking Using Partial Order Dependencies.
CoCur’2000, LNCS 1877.

[5] K. Varpaaniemi, K. Heljanko and J. Lilius.
PROD 3.2 – An Advanced Tool for Efficient
Reachability Analysis. In Proc. 9th Int'l. Conf.
on Computer-Aided Verification, LNCS, Vol.
1254, Springer-Verlag (1997) 472-475.

[6] B. Sarikaya et al. Method of analysing extended
finite-sate machine specifications. Computer
Communications, v.13 n.2, p83-92, March 1990.

[7] K. C. Tai and P. V. Koppol. Hierarchy-Based
Incremental Analysis of Communication
Protocols. Proc. Of Intl. Conf. On Network
Protocols, 1993.

[8] ISO. Information technology, Open systems
interconnection, Conformance testing
methodology and framework, Parts 1-5.
International Standard IS-9646, ISO, 1991.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp105-109)

