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Abstract: - Mobile telecommunication sector has been accelerated with GSM 1800 licenses in the Turkey. 
Since then, churn management has won vital importance for the GSM operators. Customers should have 
segmented according to their profitability for the churn management.  If we know the profitable customer 
segments, we have chance to keep in hand the most important customers via the suitable promotions and 
campaigns. In this study, we implemented clustering algorithms to 250 subscribers’ 100MBs call detail 
records(CDRs), demographic data and billing information. Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) compared with K-Means, Expectation Maximization and Farthest-First clustering 
techniques. As a result, DBSCAN has good distinct clusters for profiling customer segments.  
 
Key-Words: - Clustering Algorithms, Data Mining, Clustering for GSM, DBSCAN, Benchmarking of 
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1 Introduction 
All of the GSM companies would like to know what 
would happen to their loyal subscribers. It is surely 
impossible accurately to know that, however it 
could be estimated if you have valuable recent data 
and a useful miner for them. 

Cellular phone usage is very important for the 
GSM operators. Both voice and data services are 
basic revenue gaining items for them. Thus, GSM 
operators should have to predict their customer 
behaviors to keep them registered. Managers want 
to understand why some customers remain loyal 
while others leave from the telecom company.  By 
this viewpoint, they can be constructed a model that 
derived from historical data of loyal and left 
customers. The model illustrates the customer 
loyalty and churn rate.  

Previous experiences show us that most effective 
churn management can be obtained with following 
independent parameters [1]:  occupation of the 
subscriber, monthly expense, monthly income, 
credit limit, average call length for a month, average 
call length for 3 months, average call length for 4 to 
6 months, average SMS amount for a month, 
average SMS amount for 3 months, average SMS 
amount for 4 to 6 month. 

In order to make successful churn management, 
our main object is to investigate density-based 
clustering algorithms as a data miner and evaluate 
its results. There are many clustering methods 

known in the data mining literature. We preferred 
Density-Based Spatial Clustering of Application 
with Noise (DBSCAN) method to develop and 
evaluate for call detail records (CDRs) of GSM 
subscribers. Furthermore we have observed what is 
happening when a new member has joined to the set 
of members clustered. Noise tolerance was one of 
the most wondered parts of clustering for GSM 
datasets, so we have developed a method for this 
purpose and accelerates it so that it is satisfying. 
Fundamental objectives of this paper are: 
• Demonstrating efficiency of DBSCAN in the 

GSM datasets. 
• Observing results of the event when a new 

member joins to the set of members. 
• To decide which clustering structure is better for 

noise percent known, as Noise Tolerance. 
• Comparison of DBSCAN with K-Means, 

Expectation Maximization and Farthest-First as 
another clustering method. 

 
We have demonstrated the subject detailed in the 

2nd Section. The main problems that we encountered 
during development have been exhibited in the 
Section 3. The solutions have followed the problems 
in the 4th Section. In section 5, DBSCAN has been 
compared with K-Means, Expectation Maximization 
and Farthest-First clustering techniques. You can 
find conclusions of this work in the Section 6. 
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2 DBSCAN Implementation for CDRs 
Density-Based Spatial Clustering of Application 
with Noise (DBSCAN) method evaluated as 
Density-Based method in this paper. In order to 
cluster GSM data, we preprocessed the CDRs, 
demographic data and billing information about the 
GSM subscribers and we produced scores between 
0-250 for each subscriber. As discussed in [1], 
classification techniques work well for churn 
management, by general classification methods; it’s 
quite easy to separate the groups, if we can define 
the general qualifications of the groups. In addition 
to this, we must be sure that we have only 3 
separated groups. For this reason we focused on 
DBSCAN algorithm that can be used for very large 
databases. 
 
2.1 The Algorithm DBSCAN 
Traditional DBSCAN algorithm has two variables. 
Meanwhile those are X and Y coordinates of the 
DBSCAN surface. We have initially mentioned 
traditional algorithm of DBSCAN, but first of all we 
have to know 2 main parameters of the algorithm. 

The key idea of density-based clustering is that 
for each object of a cluster the neighborhood of a 
given radius (Eps) has to contain at least a minimum 
number of objects (MinPts), i.e. the cardinality of 
the neighborhood has to exceed some threshold [2]. 

If two clusters C1 and C2 are very close to each 
other, it might happen that some point p belongs to 
both, C1 and C2. Then p must be a border point in 
both clusters because otherwise C1 would be equal 
to C2 since we use global parameters. In this case, 
point p will be assigned to the cluster discovered 
first [3]. 

After exhibiting traditional DBSCAN, we can 
start to mention about DBSCAN for GSM dataset. 
As we said before, traditional DBSCAN has 2 
coordinates on the set of point surface. However in 
GSM dataset, we have 1 coordinate and 1 index. 
Remarking 1 index, we have pointed to GSM 
operator subscriber number (MSISDN); and 1 
coordinate means the output score of independent 
variables that we evaluated. We have examined the 
problems and modifications in the section 3, while 
implementing GSM data onto traditional DBSCAN 
algorithm. 
 
2.2 Estimation over DBSCAN for GSM 
So far, we have created clusters in set of points 
according to Eps and MinPts. Then when a new 
member joins to the set, we could estimate which 
cluster would contain the member point. If we know 
level of noise members, and need to know how 

many alternations of clusters could happen, we can 
use the second estimation part of DBSCAN for 
GSM dataset. We have called this procedure as 
“Noise Tolerance”. 
 
2.2.1 New Member Addition into GSM Data 
Set  
After a new subscriber joins to GSM operator, we 
have to execute DBSCAN algorithm again. But, we 
can not be sure that all clusters will remain same. 
Adding new subscriber to our clusters and cluster 
levels may be changed. The entrance and re-execute 
algorithm is like below: 
 
SetOfPoints.AddMember(MSISDN, OutputScore) 
SetOfPoints.SetClusterIDs(UNCLASSIFIED) 
//re-execute of DBSCAN 
DBSCAN (SetOfPoints, Eps, MinPts) 
   // SetOfPoints is UNCLASSIFIED 
   ClusterId := nextId(NOISE); 
   FOR i FROM 1 TO SetOfPoints.size DO 
      Point := SetOfPoints.get(i); 
      IF Point.ClId = UNCLASSIFIED THEN 
         IF ExpandCluster(SetOfPoints, Point, ClusterId,  
           Eps, MinPts) THEN 
            ClusterId := nextId(ClusterId) 
         END IF 
      END IF 
   END FOR 
END; // DBSCAN 
 
2.2.2 Noise Tolerance 
The second part DBSCAN estimation is to calculate 
how many alternative clusters we might have, when 
we enter the noise level of the GSM subscribers. 

For this purpose, we defined a few new 
variables, such as NoisePercent, MinOutput, 
MaxOutput etc. The algorithm of Noise Tolerance 
can simply be explained as; 
1. We do not know Eps and MinPts, and would 

like to know how many alternations we might 
have? 

2. We have a set of GSM subscribers and a noise 
percent. For example, noise percent is equal to 
10% means that 10% of subscribers constitutes 
noise cluster (means 10% could not be joined to 
any cluster). 

3. Under these conditions what is our Eps and 
MinPts? And how many alternatives do we have 
to form clusters? 
 

FOR I FROM 1 TO (MaxOutput-MinOutput) DO 
   Eps = 1 
   J = 1 
   noiseSize = 0 
   WHILE((J<SetOfPoints.size) AND (noiseSize <=  
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                                                                     noisePercent)) 
      MinPts = J 
      DBSCAN() //Traditional DBSCAN above   
      noiseSize = 0 
      FOR K FROM 1 TO (SetOfPoints.size) DO 
         IF(SetOfPoints.Member[K].ClusterID=0) THEN 
            noiseSize = noiseSize + 1 
         END IF 
      END FOR 
      ClusterID = ClusterID – 1 
      IF((noiseSize = noisePercent) AND (ClusterID >=  
       NextID(MinimumWished) 
       Save(noiseSize, Eps, MinPts, ClusterID) 
      END IF 
      J = J + 1 
   END WHILE 
END FOR    
 

Via this algorithm, we could prefer minimum 
cluster number. For example, if subscribers 
clustered into less than 3 parts are not valid for our 
application, we can prefer MinimumWished as 3.  
 
3 Usage of DBSCAN in Churn 
Management 
We applied DBSCAN clustering algorithm to define 
different clusters of GSM subscribers. We have 
been able to decide the campaigns matching the 
clusters of subscribers.  

When we chose Eps=17 and MinPts=3, we have 
reached the results below: 
 

Table 1: Clusters with known Eps & MinPts 
NOISE Values: There is no NOISE! 
Cluster( 1): 
  MSISDN=    2600000    Output=    246 
  MSISDN=    2600010    Output=    202 
  MSISDN=    2600025    Output=    224 
  MSISDN=    2600030    Output=    213 
  MSISDN=    2600035    Output=    245 
  MSISDN=    2600045    Output=    211 
  MSISDN=    2600085    Output=    199 
  MSISDN=    2600105    Output=    240 
Cluster( 2): 
  MSISDN=    2600015    Output=     16 
  MSISDN=    2600060    Output=      7 
  MSISDN=    2600070    Output=     32 
  MSISDN=    2600080    Output=     43 
  MSISDN=    2600095    Output=     15 
  MSISDN=    2600100    Output=     11 
  MSISDN=    2600110    Output=     50 
  MSISDN=    2600120    Output=     29 
  MSISDN=    2600125    Output=     44 
Cluster( 3): 
  MSISDN=    2600020    Output=    178 
  MSISDN=    2600040    Output=    161 
  MSISDN=    2600050    Output=    153 
  MSISDN=    2600130    Output=    157 

  MSISDN=    2600135    Output=    162 
Cluster( 4): 
  MSISDN=    2600005    Output=     70 
  MSISDN=    2600055    Output=    119 
  MSISDN=    2600065    Output=     98 
  MSISDN=    2600075    Output=     97 
  MSISDN=    2600090    Output=    122 
  MSISDN=    2600115    Output=     81 
  MSISDN=    2600140    Output=    105 
  MSISDN=    2600145    Output=     88 

 
We initially tested 20 subscribers’ related data, 

and want to start campaigns for them. But we don’t 
know which subscribers will join to which 
campaign. We thought and planned about 
everything in our strategy, according to the fact that 
we have only 3 clusters for 3 kinds of subscribers 
(loyal, hopper, lost). After with DBSCAN, we have 
seen that we might have more than 3 clusters, and 
there is no noise value. In real world, we cannot 
cluster some of our subscribers. Thus the noise 
subscribers are belonging to noise cluster. If this is a 
problem for our GSM Company, the problem can be 
solved as below.  

For another example, we started campaigns, after 
clustering the subscribers. During the campaigns, 
we have started to think about members. The part of 
DBSCAN algorithm to add new member, which was 
defined in the section 2, has helped us and the new 
subscribers have participated in their campaign 
clusters. This action has formed the first part of 
DBSCAN estimation task.  

Working on the second part of DBSCAN 
estimation task, we have considered what if we do 
not know what are our Eps and MinPts. In the 2nd 
section, we have mentioned about this problem and 
given the solution of it in pseudo code. The example 
below is showing the results.  

If we chose that we don’t want any noise cluster 
(means noise percent is equal to 0%), and we would 
like to observe how many alternations we might 
have for number of clusters, Eps and MinPts. We 
could run the algorithm for various noise percents. 
We ran DBSCAN for the sample above and 
determined the MinimumWished is 3. 
MinimumWished, as we mentioned about it in the 
section 2, means the minimum number of clusters in 
a set of subscribers. The results are in the Table 2. 
 

Table 2: Results of noise tolerance 
NOISE    Eps   MinPts   Cluster No 
   0      17        3          4 
   0      18        1          4 
   0      18        2          4 
   0      18        3          4 
   0      19        1          4 
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   0      19        2          4 
   0      19        3          4 
   0      20        1          3 
   0      20        2          3 
   0      20        3          3 
   0      22        4          3 
   0      23        4          3 
   0      24        4          3 
   0      25        4          3 
   0      25        5          3 
   0      26        5          3 
   0      27        6          3 
   0      28        6          3 
   0      29        6          3 
Processing Time: 00:00:39 
 

The results mean that when we accept Eps=24 
and MinPts=4, we achieve the zero noise with 3 
clusters. And we can check whether we can reach 5 
clusters with zero noise. 

When we ran DBSCAN for our sample, we have 
seen that zero noise with 5 clusters is impossible. 
Furthermore, we have paid attention on the 
processing time. Even for a tiny sample, it is not 
acceptable. We have measured it on the Pentium-4 
1.8 GHz CPU and 1 Gb memory. To shorten the 
long processing time, we have offered an 
improvement in the section 4.  
 
4 Solutions for the DBSCAN Run-
Time Productivity Problem in GSM 
We ran the algorithm DBSCAN on various samples 
of data sets; in any run-time we couldn’t be satisfied 
with run-time length. Changing samples couldn’t 
change the results, which was too long. Then we 
tried debugging the code to find bottleneck. 
Solutions on 2 points have helped us to improve 
Noise Tolerance procedure of DBSCAN algorithm 
for GSM data set. 
 
4.1 Omitting the Idle Process 
According to Noise Tolerance algorithm, we added 
all possible Eps and MinPts values into DBSCAN 
loop, and then we saved the valid values that are 
accessible.  

If we remember how the algorithm works, Eps 
and MinPts values are increasing in sequence. For a 
MinPts value, if an Eps cannot satisfy the valid 
result, increment of MinPts is an idle process, which 
steals from run-time. 

With a basic control, we have broken the loop, 
and omitted the idle processes. When we pay 
attention to the code of Noise Tolerance, we could 
see that we haven’t used for loop, but while loop. 

Since the main problem of run-time length was 
noise tolerance; we focused on the code of it. We 
remembered that we asked the “MinimumWished” 
number of clusters from the user, and checked the 
Eps and MinPts, which satisfy the value asked. 

On this point, we considered whether it is 
accelerating the program, if we postpone the 
control. We have gained a giant improvement on 
run-time speed. We have surely used the control 
somewhere in the program, but not in the main (and 
the longest) loop. By testing system after changing 
code, we have seen we might keep memory busy 
more than before, but the CPU has calmed down. 
Using this variation, we have run the algorithm 
again and reach the 10 seconds as processing time 
on the same configuration, 40 seconds instead for 
the test subscribers’ data set. 
 
5 DBSCAN vs. K-Means, Expectation 
Maximization and Farthest-First 
Clustering Algorithms 
In this section, we have evaluated the performance 
of DBSCAN, comparing it with the performance of 
some other clustering algorithms. We have selected 
K-Means (KM), Expectation Maximization (EM) 
and Farthest-First (FF) methods as rival for 
DBSCAN. 

We compared the Algorithm DBSCAN with the 
others. We have already developed a tool by C++ 
for DBSCAN; we have used it for benchmark 
process. However for the other methods such as 
KM, EM and FF we have used WEKA, which is the 
popular open-source data mining tool of University 
of Waikato.  

Three kinds of subscribers are considered for 
churn management, as we mentioned in the Section 
3. That’s why we have run all algorithms for 3 
clusters, and observed the results regarding to these 
clusters, which are loyal, hopper and lost. We have 
implemented the algorithms for this purpose. In all 
experiments, we have accepted the noise percentage 
(“noise tolerance” as we called) is equal to 0%. 

All experiments have been run on the 
workstation that is configured with Intel Pentium 
1.7GHz CPU, 1GB memory. 

For the benchmark we have not used the data 
above, which has 30 instances, but we have used the 
input that has 250 instances. About K-Means by 
WEKA, we have observed the results below: 
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Fig. 1. K-Means results for 3 clusters 

 
 
We have initially paid attention that mean value 

of output attributes. For the cluster 0, mean value is 
52.8969, which is acceptable. But for the second 
and third cluster they are 176.519 and 180.0685, and 
then they are too close to each other, which mean 
they could contain some values of each other. We 
should look out the standard deviations of these 
values. If the standard deviations are less than the 
difference between the mean values, prejudice 
might have misled us. However we have seen that 
standard deviations are too high, which means that 
the clusters aren’t separated from each other. The 
first question in the minds is how we can start a 
campaign for these clusters, which are too close to 
each other, unless churn management can clearly 
distinguish any subscriber than the others. Thus, we 
can conclude that K-means clustering algorithm did 
not work well for our data sets. 

 
Fig. 3. EM results for 3 clusters 

 
 
We ran the Expectation Maximization and 

Farthest First algorithms to reach valid results for 
churn management respectively.  

 Fig. 2. Farthest-First results for 3 clusters 

 
 
But when we saw that characteristics of the 

results are similar to K-Means, we have considered 
that we wouldn’t be able to reach the results those 
Churn Management needs, by the clustering 
methods such as partitioning etc. Churn 
management for telecom companies naturally needs 
to determine certain borders of clusters to start a 
campaign that depends on their characteristics.  

To cluster the set of subscribers according to our 
purpose, we need to separate them as their dense, 
because density of subscribers’ outputs could 
determine the characteristic of the campaign that 
would be applied. Just this reason could indicate 
that DBSCAN algorithm (as a density based 
clustering algorithm) is better than the others. 

In order to indicate our suggestion, we have 
executed DBSCAN tool that we developed on 
telecom data that we had, and then have examined 
the output of DBSCAN for the telecom data. 
 

Fig. 4. DBSCAN results for 3 clusters 

 
 
After we ran the DBSCAN tool on the telecom 

data, we have experienced that our idea is right. 
There are 3 clusters and 3 of them are clearly 
distinguished from each other in the latest results. If 
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we pay attention to mean values of the clusters, we 
can see that they are far from the others, regarding 
to the standard deviations. 

If we wanted to see all results in a graphic, Fig. 
5. would help us. Mean values of all clusters by any 
methods have been illustrated in the graphic. Then 
we can see how clusters are close to each others in 
any clustering method. 
 

Fig 5. Comparison of the Clustering Results 

 
 
Via the Fig. 5., we can observe that mean values 

of Cluster-1 and Cluster-2 are quite near to each 
other, which means that the subscribers’ 
characteristics are so near to each other. However 
there isn’t any problem like that about in DBSCAN, 
because it’s obvious to see that all clusters are far 
from the others. 

We cannot surely say that the results of K-
Means, Expectation Maximization and Farthest-
First are useless, but we may encounter problems 
while clustering to telecom churn management by 
these methods.  

Consequently we have experienced that there is a 
right way towards clustering to telecom churn 
management by DBSCAN, as a density based 
algorithm, due to the fact that the algorithm 
DBSCAN includes clusters according to their 
density. Only DBSCAN supplies the main 

requirement of telecom churn management with it is 
“clear separation”. 
 
6 Conclusions 
DBSCAN, as a clustering algorithm, has been 
implemented to the GSM sector, have run to help 
Churn Management and the results have been 
demonstrated in this paper. 

The algorithm DBSCAN has been defined 
detailed in order to remove question marks in the 
minds during implementation time of the algorithm 
to the GSM sector. While defining DBSCAN some 
problems have been come across. Solving the 
problems, we have explored how plain the code of 
DBSCAN is. It’s obvious to see that DBSCAN 
works faster than its equivalents, by means of this 
plainness.  

The Density-based algorithm DBSCAN has been 
compared with some other clustering methods and 
after performance test, DBSCAN has seemed more 
suitable than K-Means, Expectation Maximization 
and Farthest-First for GSM operators to churn 
management. 
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