
Comparing Clustering Techniques for Telecom Churn Management

ADEM KARAHOCA, ALI KARA
Bahcesehir University, Engineering Faculty

Computer Engineering Department
34538 Bahcesehir – Istanbul, TURKEY

Abstract: - Mobile telecommunication sector has been accelerated with GSM 1800 licenses in the Turkey.
Since then, churn management has won vital importance for the GSM operators. Customers should have
segmented according to their profitability for the churn management. If we know the profitable customer
segments, we have chance to keep in hand the most important customers via the suitable promotions and
campaigns. In this study, we implemented clustering algorithms to 250 subscribers’ 100MBs call detail
records(CDRs), demographic data and billing information. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) compared with K-Means, Expectation Maximization and Farthest-First clustering
techniques. As a result, DBSCAN has good distinct clusters for profiling customer segments.

Key-Words: - Clustering Algorithms, Data Mining, Clustering for GSM, DBSCAN, Benchmarking of
Clustering Methods, Churn Management

1 Introduction
All of the GSM companies would like to know what
would happen to their loyal subscribers. It is surely
impossible accurately to know that, however it
could be estimated if you have valuable recent data
and a useful miner for them.

Cellular phone usage is very important for the
GSM operators. Both voice and data services are
basic revenue gaining items for them. Thus, GSM
operators should have to predict their customer
behaviors to keep them registered. Managers want
to understand why some customers remain loyal
while others leave from the telecom company. By
this viewpoint, they can be constructed a model that
derived from historical data of loyal and left
customers. The model illustrates the customer
loyalty and churn rate.

Previous experiences show us that most effective
churn management can be obtained with following
independent parameters [1]: occupation of the
subscriber, monthly expense, monthly income,
credit limit, average call length for a month, average
call length for 3 months, average call length for 4 to
6 months, average SMS amount for a month,
average SMS amount for 3 months, average SMS
amount for 4 to 6 month.

In order to make successful churn management,
our main object is to investigate density-based
clustering algorithms as a data miner and evaluate
its results. There are many clustering methods

known in the data mining literature. We preferred
Density-Based Spatial Clustering of Application
with Noise (DBSCAN) method to develop and
evaluate for call detail records (CDRs) of GSM
subscribers. Furthermore we have observed what is
happening when a new member has joined to the set
of members clustered. Noise tolerance was one of
the most wondered parts of clustering for GSM
datasets, so we have developed a method for this
purpose and accelerates it so that it is satisfying.
Fundamental objectives of this paper are:
• Demonstrating efficiency of DBSCAN in the

GSM datasets.
• Observing results of the event when a new

member joins to the set of members.
• To decide which clustering structure is better for

noise percent known, as Noise Tolerance.
• Comparison of DBSCAN with K-Means,

Expectation Maximization and Farthest-First as
another clustering method.

We have demonstrated the subject detailed in the

2nd Section. The main problems that we encountered
during development have been exhibited in the
Section 3. The solutions have followed the problems
in the 4th Section. In section 5, DBSCAN has been
compared with K-Means, Expectation Maximization
and Farthest-First clustering techniques. You can
find conclusions of this work in the Section 6.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

2 DBSCAN Implementation for CDRs
Density-Based Spatial Clustering of Application
with Noise (DBSCAN) method evaluated as
Density-Based method in this paper. In order to
cluster GSM data, we preprocessed the CDRs,
demographic data and billing information about the
GSM subscribers and we produced scores between
0-250 for each subscriber. As discussed in [1],
classification techniques work well for churn
management, by general classification methods; it’s
quite easy to separate the groups, if we can define
the general qualifications of the groups. In addition
to this, we must be sure that we have only 3
separated groups. For this reason we focused on
DBSCAN algorithm that can be used for very large
databases.

2.1 The Algorithm DBSCAN
Traditional DBSCAN algorithm has two variables.
Meanwhile those are X and Y coordinates of the
DBSCAN surface. We have initially mentioned
traditional algorithm of DBSCAN, but first of all we
have to know 2 main parameters of the algorithm.

The key idea of density-based clustering is that
for each object of a cluster the neighborhood of a
given radius (Eps) has to contain at least a minimum
number of objects (MinPts), i.e. the cardinality of
the neighborhood has to exceed some threshold [2].

If two clusters C1 and C2 are very close to each
other, it might happen that some point p belongs to
both, C1 and C2. Then p must be a border point in
both clusters because otherwise C1 would be equal
to C2 since we use global parameters. In this case,
point p will be assigned to the cluster discovered
first [3].

After exhibiting traditional DBSCAN, we can
start to mention about DBSCAN for GSM dataset.
As we said before, traditional DBSCAN has 2
coordinates on the set of point surface. However in
GSM dataset, we have 1 coordinate and 1 index.
Remarking 1 index, we have pointed to GSM
operator subscriber number (MSISDN); and 1
coordinate means the output score of independent
variables that we evaluated. We have examined the
problems and modifications in the section 3, while
implementing GSM data onto traditional DBSCAN
algorithm.

2.2 Estimation over DBSCAN for GSM
So far, we have created clusters in set of points
according to Eps and MinPts. Then when a new
member joins to the set, we could estimate which
cluster would contain the member point. If we know
level of noise members, and need to know how

many alternations of clusters could happen, we can
use the second estimation part of DBSCAN for
GSM dataset. We have called this procedure as
“Noise Tolerance”.

2.2.1 New Member Addition into GSM Data
Set
After a new subscriber joins to GSM operator, we
have to execute DBSCAN algorithm again. But, we
can not be sure that all clusters will remain same.
Adding new subscriber to our clusters and cluster
levels may be changed. The entrance and re-execute
algorithm is like below:

SetOfPoints.AddMember(MSISDN, OutputScore)
SetOfPoints.SetClusterIDs(UNCLASSIFIED)
//re-execute of DBSCAN
DBSCAN (SetOfPoints, Eps, MinPts)
 // SetOfPoints is UNCLASSIFIED
 ClusterId := nextId(NOISE);
 FOR i FROM 1 TO SetOfPoints.size DO
 Point := SetOfPoints.get(i);
 IF Point.ClId = UNCLASSIFIED THEN
 IF ExpandCluster(SetOfPoints, Point, ClusterId,
 Eps, MinPts) THEN
 ClusterId := nextId(ClusterId)
 END IF
 END IF
 END FOR
END; // DBSCAN

2.2.2 Noise Tolerance
The second part DBSCAN estimation is to calculate
how many alternative clusters we might have, when
we enter the noise level of the GSM subscribers.

For this purpose, we defined a few new
variables, such as NoisePercent, MinOutput,
MaxOutput etc. The algorithm of Noise Tolerance
can simply be explained as;
1. We do not know Eps and MinPts, and would

like to know how many alternations we might
have?

2. We have a set of GSM subscribers and a noise
percent. For example, noise percent is equal to
10% means that 10% of subscribers constitutes
noise cluster (means 10% could not be joined to
any cluster).

3. Under these conditions what is our Eps and
MinPts? And how many alternatives do we have
to form clusters?

FOR I FROM 1 TO (MaxOutput-MinOutput) DO
 Eps = 1
 J = 1
 noiseSize = 0
 WHILE((J<SetOfPoints.size) AND (noiseSize <=

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

 noisePercent))
 MinPts = J
 DBSCAN() //Traditional DBSCAN above
 noiseSize = 0
 FOR K FROM 1 TO (SetOfPoints.size) DO
 IF(SetOfPoints.Member[K].ClusterID=0) THEN
 noiseSize = noiseSize + 1
 END IF
 END FOR
 ClusterID = ClusterID – 1
 IF((noiseSize = noisePercent) AND (ClusterID >=
 NextID(MinimumWished)
 Save(noiseSize, Eps, MinPts, ClusterID)
 END IF
 J = J + 1
 END WHILE
END FOR

Via this algorithm, we could prefer minimum
cluster number. For example, if subscribers
clustered into less than 3 parts are not valid for our
application, we can prefer MinimumWished as 3.

3 Usage of DBSCAN in Churn
Management
We applied DBSCAN clustering algorithm to define
different clusters of GSM subscribers. We have
been able to decide the campaigns matching the
clusters of subscribers.

When we chose Eps=17 and MinPts=3, we have
reached the results below:

Table 1: Clusters with known Eps & MinPts
NOISE Values: There is no NOISE!
Cluster(1):
 MSISDN= 2600000 Output= 246
 MSISDN= 2600010 Output= 202
 MSISDN= 2600025 Output= 224
 MSISDN= 2600030 Output= 213
 MSISDN= 2600035 Output= 245
 MSISDN= 2600045 Output= 211
 MSISDN= 2600085 Output= 199
 MSISDN= 2600105 Output= 240
Cluster(2):
 MSISDN= 2600015 Output= 16
 MSISDN= 2600060 Output= 7
 MSISDN= 2600070 Output= 32
 MSISDN= 2600080 Output= 43
 MSISDN= 2600095 Output= 15
 MSISDN= 2600100 Output= 11
 MSISDN= 2600110 Output= 50
 MSISDN= 2600120 Output= 29
 MSISDN= 2600125 Output= 44
Cluster(3):
 MSISDN= 2600020 Output= 178
 MSISDN= 2600040 Output= 161
 MSISDN= 2600050 Output= 153
 MSISDN= 2600130 Output= 157

 MSISDN= 2600135 Output= 162
Cluster(4):
 MSISDN= 2600005 Output= 70
 MSISDN= 2600055 Output= 119
 MSISDN= 2600065 Output= 98
 MSISDN= 2600075 Output= 97
 MSISDN= 2600090 Output= 122
 MSISDN= 2600115 Output= 81
 MSISDN= 2600140 Output= 105
 MSISDN= 2600145 Output= 88

We initially tested 20 subscribers’ related data,

and want to start campaigns for them. But we don’t
know which subscribers will join to which
campaign. We thought and planned about
everything in our strategy, according to the fact that
we have only 3 clusters for 3 kinds of subscribers
(loyal, hopper, lost). After with DBSCAN, we have
seen that we might have more than 3 clusters, and
there is no noise value. In real world, we cannot
cluster some of our subscribers. Thus the noise
subscribers are belonging to noise cluster. If this is a
problem for our GSM Company, the problem can be
solved as below.

For another example, we started campaigns, after
clustering the subscribers. During the campaigns,
we have started to think about members. The part of
DBSCAN algorithm to add new member, which was
defined in the section 2, has helped us and the new
subscribers have participated in their campaign
clusters. This action has formed the first part of
DBSCAN estimation task.

Working on the second part of DBSCAN
estimation task, we have considered what if we do
not know what are our Eps and MinPts. In the 2nd
section, we have mentioned about this problem and
given the solution of it in pseudo code. The example
below is showing the results.

If we chose that we don’t want any noise cluster
(means noise percent is equal to 0%), and we would
like to observe how many alternations we might
have for number of clusters, Eps and MinPts. We
could run the algorithm for various noise percents.
We ran DBSCAN for the sample above and
determined the MinimumWished is 3.
MinimumWished, as we mentioned about it in the
section 2, means the minimum number of clusters in
a set of subscribers. The results are in the Table 2.

Table 2: Results of noise tolerance
NOISE Eps MinPts Cluster No
 0 17 3 4
 0 18 1 4
 0 18 2 4
 0 18 3 4
 0 19 1 4

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

 0 19 2 4
 0 19 3 4
 0 20 1 3
 0 20 2 3
 0 20 3 3
 0 22 4 3
 0 23 4 3
 0 24 4 3
 0 25 4 3
 0 25 5 3
 0 26 5 3
 0 27 6 3
 0 28 6 3
 0 29 6 3
Processing Time: 00:00:39

The results mean that when we accept Eps=24
and MinPts=4, we achieve the zero noise with 3
clusters. And we can check whether we can reach 5
clusters with zero noise.

When we ran DBSCAN for our sample, we have
seen that zero noise with 5 clusters is impossible.
Furthermore, we have paid attention on the
processing time. Even for a tiny sample, it is not
acceptable. We have measured it on the Pentium-4
1.8 GHz CPU and 1 Gb memory. To shorten the
long processing time, we have offered an
improvement in the section 4.

4 Solutions for the DBSCAN Run-
Time Productivity Problem in GSM
We ran the algorithm DBSCAN on various samples
of data sets; in any run-time we couldn’t be satisfied
with run-time length. Changing samples couldn’t
change the results, which was too long. Then we
tried debugging the code to find bottleneck.
Solutions on 2 points have helped us to improve
Noise Tolerance procedure of DBSCAN algorithm
for GSM data set.

4.1 Omitting the Idle Process
According to Noise Tolerance algorithm, we added
all possible Eps and MinPts values into DBSCAN
loop, and then we saved the valid values that are
accessible.

If we remember how the algorithm works, Eps
and MinPts values are increasing in sequence. For a
MinPts value, if an Eps cannot satisfy the valid
result, increment of MinPts is an idle process, which
steals from run-time.

With a basic control, we have broken the loop,
and omitted the idle processes. When we pay
attention to the code of Noise Tolerance, we could
see that we haven’t used for loop, but while loop.

Since the main problem of run-time length was
noise tolerance; we focused on the code of it. We
remembered that we asked the “MinimumWished”
number of clusters from the user, and checked the
Eps and MinPts, which satisfy the value asked.

On this point, we considered whether it is
accelerating the program, if we postpone the
control. We have gained a giant improvement on
run-time speed. We have surely used the control
somewhere in the program, but not in the main (and
the longest) loop. By testing system after changing
code, we have seen we might keep memory busy
more than before, but the CPU has calmed down.
Using this variation, we have run the algorithm
again and reach the 10 seconds as processing time
on the same configuration, 40 seconds instead for
the test subscribers’ data set.

5 DBSCAN vs. K-Means, Expectation
Maximization and Farthest-First
Clustering Algorithms
In this section, we have evaluated the performance
of DBSCAN, comparing it with the performance of
some other clustering algorithms. We have selected
K-Means (KM), Expectation Maximization (EM)
and Farthest-First (FF) methods as rival for
DBSCAN.

We compared the Algorithm DBSCAN with the
others. We have already developed a tool by C++
for DBSCAN; we have used it for benchmark
process. However for the other methods such as
KM, EM and FF we have used WEKA, which is the
popular open-source data mining tool of University
of Waikato.

Three kinds of subscribers are considered for
churn management, as we mentioned in the Section
3. That’s why we have run all algorithms for 3
clusters, and observed the results regarding to these
clusters, which are loyal, hopper and lost. We have
implemented the algorithms for this purpose. In all
experiments, we have accepted the noise percentage
(“noise tolerance” as we called) is equal to 0%.

All experiments have been run on the
workstation that is configured with Intel Pentium
1.7GHz CPU, 1GB memory.

For the benchmark we have not used the data
above, which has 30 instances, but we have used the
input that has 250 instances. About K-Means by
WEKA, we have observed the results below:

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

Fig. 1. K-Means results for 3 clusters

We have initially paid attention that mean value

of output attributes. For the cluster 0, mean value is
52.8969, which is acceptable. But for the second
and third cluster they are 176.519 and 180.0685, and
then they are too close to each other, which mean
they could contain some values of each other. We
should look out the standard deviations of these
values. If the standard deviations are less than the
difference between the mean values, prejudice
might have misled us. However we have seen that
standard deviations are too high, which means that
the clusters aren’t separated from each other. The
first question in the minds is how we can start a
campaign for these clusters, which are too close to
each other, unless churn management can clearly
distinguish any subscriber than the others. Thus, we
can conclude that K-means clustering algorithm did
not work well for our data sets.

Fig. 3. EM results for 3 clusters

We ran the Expectation Maximization and

Farthest First algorithms to reach valid results for
churn management respectively.

 Fig. 2. Farthest-First results for 3 clusters

But when we saw that characteristics of the

results are similar to K-Means, we have considered
that we wouldn’t be able to reach the results those
Churn Management needs, by the clustering
methods such as partitioning etc. Churn
management for telecom companies naturally needs
to determine certain borders of clusters to start a
campaign that depends on their characteristics.

To cluster the set of subscribers according to our
purpose, we need to separate them as their dense,
because density of subscribers’ outputs could
determine the characteristic of the campaign that
would be applied. Just this reason could indicate
that DBSCAN algorithm (as a density based
clustering algorithm) is better than the others.

In order to indicate our suggestion, we have
executed DBSCAN tool that we developed on
telecom data that we had, and then have examined
the output of DBSCAN for the telecom data.

Fig. 4. DBSCAN results for 3 clusters

After we ran the DBSCAN tool on the telecom

data, we have experienced that our idea is right.
There are 3 clusters and 3 of them are clearly
distinguished from each other in the latest results. If

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

we pay attention to mean values of the clusters, we
can see that they are far from the others, regarding
to the standard deviations.

If we wanted to see all results in a graphic, Fig.
5. would help us. Mean values of all clusters by any
methods have been illustrated in the graphic. Then
we can see how clusters are close to each others in
any clustering method.

Fig 5. Comparison of the Clustering Results

Via the Fig. 5., we can observe that mean values

of Cluster-1 and Cluster-2 are quite near to each
other, which means that the subscribers’
characteristics are so near to each other. However
there isn’t any problem like that about in DBSCAN,
because it’s obvious to see that all clusters are far
from the others.

We cannot surely say that the results of K-
Means, Expectation Maximization and Farthest-
First are useless, but we may encounter problems
while clustering to telecom churn management by
these methods.

Consequently we have experienced that there is a
right way towards clustering to telecom churn
management by DBSCAN, as a density based
algorithm, due to the fact that the algorithm
DBSCAN includes clusters according to their
density. Only DBSCAN supplies the main

requirement of telecom churn management with it is
“clear separation”.

6 Conclusions
DBSCAN, as a clustering algorithm, has been
implemented to the GSM sector, have run to help
Churn Management and the results have been
demonstrated in this paper.

The algorithm DBSCAN has been defined
detailed in order to remove question marks in the
minds during implementation time of the algorithm
to the GSM sector. While defining DBSCAN some
problems have been come across. Solving the
problems, we have explored how plain the code of
DBSCAN is. It’s obvious to see that DBSCAN
works faster than its equivalents, by means of this
plainness.

The Density-based algorithm DBSCAN has been
compared with some other clustering methods and
after performance test, DBSCAN has seemed more
suitable than K-Means, Expectation Maximization
and Farthest-First for GSM operators to churn
management.

References:
[1] Karahoca, A., Data Mining Via Cellular Neural

Networks In The GSM Sector, The 8th IASTED
International Conference Software Engineering
And Applications, Cambridge, MA, 2004, pp.
19-24.

[2] Ester M., Kriegel H.-P., Sander J., and Xu X.
1996. Incremental Clustering for Mining in a
Data Warehousing Environment, 4th
International Conference on Knowledge
Discovery and Data Mining (KDD-98), 1998.

[3] Beckmann N., Kriegel H.-P., Schneider R, and
Seeger B. 1990. The R*-tree: An Efficient and
obust Access Method for Points and
Rectangles, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Atlantic City, NJ, 1990,
pp. 322-331.

[4] Stonebraker M., Frew J., Gardels K., and
Meredith J.1993. The SEQUOIA 2000 Storage
Benchmark, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Washington, DC,
1993, pp. 2-11.

[5] Ester M., Kriegel H.-P., Sander J., and Xu X.
1996. A Density-Based Algorithm for
Discovering Clusters in Large Spatial
Databases with Noise, 2nd International
Conference on Knowledge Discovery and Data
Mining (KDD-96), 1996.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp281-286)

