
A Dynamic Workload Balancing Technique of a Text
Matching Algorithm on a Cluster

ODYSSEAS EFREMIDES
University of Hertfordshire, Hatfield, UK,

in collaboration with IST Studies
Dept. of Computer Science

72 Pireos Str., 183 46, Moschato, Athens
GREECE

obe@ist.edu.gr

GEORGE IVANOV
University of Hertfordshire, Hatfield, UK,

in collaboration with IST Studies
Dept. of Computer Science

72 Pireos Str., 183 46, Moschato, Athens
GREECE

ivanov@ist.edu.gr

Abstract: A dynamic workload allocation model which utilizes a data pool manager is investigated herein. It
aims at heterogeneous multicomputer environments and the implementation is written in C using the MPICH NT
1.2.5 message passing interface for Microsoft Windows based clusters. The algorithm utilized is the data parallel
adaptation of the Brute Force exact pattern matching algorithm. Performance evaluation for both homogeneous
and heterogeneous system configurations is experimentally investigated.

Key–Words: Parallel pattern matching, Heterogeneous clusters, Workload Allocation, Data pool model

1 Introduction
Applications designed for heterogeneous systems
built on a cluster of workstations must implement a
mechanism for dynamic workload allocation based
on their processing capacity. Nevertheless, for large
scale systems consisted of a variety of workstations,
predetermining a specific workload amount for each
node based on its processing capabilities can become
a cumbersome methodology.

An automated dynamic workload allocation
mechanism that utilizes a data pool manager for the
parallel - exact string matching problem over a hetero-
geneous cluster of workstations is investigated herein.
The pattern matching algorithm employed is a data
parallel adaptation of the well known sequential Brute
Force [3] [4] algorithm. The implementation is tested
and evaluated in homogeneous and heterogeneous en-
vironments with an adjustable number of workstations
and is compared to a simple static workload allocation
version [12].

2 Data Pool Workload Management
The dynamic workload allocation mechanism follows
a different approach in the utilization of available data
parallelism compared to the static relaxed - parallel
implementation [12]. Instead of partitioning data ac-
cording to the number of cluster nodes and then as-
signing a part of roughly the same size to each node
that will be processed during the computation phase,

data are split into packets that form a pool which con-
sists of the entire search file. Worker nodes cannot use
this information without being managed by the pool
manager. Note, that all segments in the pool have the
same size, with the exception of the last one whose
size may be smaller than the selected size value.

Information concerning the data packets can only
be found at the pool manager whose role is under-
taken by the root node. To manage this data, a dy-
namic packet availability table is built and stored lo-
cally, based on the size of the search file and the prede-
fined packet size. Each table position acts as an iden-
tifier of a packet. If that specific packet is available
for processing the position is appropriately marked,
while packets that have been scanned for occurrences
by a node are marked as unavailable. Hence, the pro-
gram returns with the entire number of pattern occur-
rences within the search file when all packets have
been processed and therefore the pool is empty. Since
this table is only available at the manager, packet size
should be such so that it does not incur too much
network traffic, due to often requests for identifiers.
At the same time it has to be small enough so that
processing time for each packet is not excessive at
slow nodes.

Partitioning cannot be performed by worker
nodes and is a part of the world initialization process
at the root. This happens because all nodes may have
the entire search data stored locally or in a shared
medium but not the information on how to use it.
This information is only obtained after a message ex-

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)



change with the pool manager. Each communication
concerns only one data packet. Each packet is ap-
propriately overlapped locally by pattern length−1
so that no occurrences are lost between packets. Fi-
nally, in order to handle packets of any size without
any problems due to physical memory restrictions, in-
ternal packet splitting during the read - load process is
also performed. These packets are also appropriately
overlapped, without requiring additional I/O activity,
again ensuring that no occurrences are lost.

The entire process, concerning task allocation, is
designed so that waiting time is extremely low: the
time to process a single request includes a scan in the
availability table to locate a non processed packet and
then a 4 byte communication of the id (identifier) of
the packet follows. This id will be used by the worker
node to locate the specific packet in the search file and
will no longer be available for processing.

Nodes that process packets faster than other nodes
will request more packets more often than slower
ones. As a result the workload is automatically dis-
tributed to nodes based on their processing capabil-
ities. Moreover, the execution time is not bounded
by the slowest node as workload is appropriately bal-
anced amongst nodes of different capabilities. Finally,
the overhead from inefficient utilization of the entire
cluster due to nonexistence of an adequate number of
packets in order for all nodes to be busy at the end of
the scan process is extremely small, because the pack-
ets are of relatively small size and require only tenths
of seconds of computation time.

2.1 Orchestration and Mapping
After the initialization phase, the pool manager waits
for incoming requests from any node that wants to be
sent the identification of a packet to process. At the
same time, worker nodes immediately send a request
message to the root. The pool manager processes re-
quests one by one and sends to each node one packet
for scanning. More specifically an integer identifier
of the segment of the search file is sent and is used by
the worker to resolve the data to be scanned. When
a worker finishes processing the packet and becomes
idle a new request message is sent and so on. When all
packets in the pool have been scanned the root sends
a terminate message to all workers and a collective
communication follows so that results of the compu-
tation are sent back to the root.

The overhead from the communication over the
network should be relatively small in a 100Mbit/s Eth-
ernet infrastructure. This happens because the request
message is only 4 bytes in size and the identifier of the
packet sent with each communication to the request-
ing node is also 4 bytes long. Even if these are en-

Figure 1: Pool Manager Based Dynamic Workload
Allocation Algorithm

capsulated in a larger packet for communication rea-
sons [5], the overhead should still be trivial.

2.2 The Algorithm
Figure 1 shows the algorithm of the pool manager
based dynamic workload allocation model. Although
this implementation depends on communication, its
general overhead to performance should be minimal.
Hence, the implementation should be efficient enough
with a good linear speedup on a heterogeneous or ho-
mogeneous cluster.

2.2.1 The Data Secure Adaptation
Two implementations where developed. The first one,
called simple, implements the entire procedure as de-
scribed above. The other, described herein, suggests
a simplified and more secure data management ap-
proach. Hence, instead of having the dataset scattered
amongst a large number of workstations, the search
files and patterns are only located in one node, the
data secure pool manager and no other nodes have
direct access to this information.

This mainly differentiates this modified version in
the fact that it relies even more on the available inter-
connection network and its speed. Specifically, it re-
quires the transmission of the pattern that will be used
in the search phase. Furthermore, during the compu-
tation process each communication between the pool
manager and worker nodes involves real data transfer
instead of identifiers that help locate the data locally

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)



or in a file server. Since the data will only be read by
one workstation it also incurs higher I/O overhead.

3 Experimental Results
3.1 The Cluster Configuration
The developed workload allocation model is evaluated
using a cluster consisting of maximum 16 worksta-
tions with Intel Pentium 4 2.40GHz CPUs and 512MB
of RAM and 16 Intel Celeron 2.20GHz CPUs with
256MB of RAM. Microsoft Windows 2000 Profes-
sional is the operating system installed on all work-
stations. Appropriate combinations achieve a hetero-
geneous or homogeneous computing environment, as
desired and denoted where applicable. Note, that the
cluster is dedicated [6] during all conducted tests.

Nodes of the cluster communicate using a
100Mbit/s Ethernet interconnection and are actually
part of a larger local area network.

3.2 Development Environment
The implementation is written in C, utilizing the
Argonne National Laboratory MPICH NT Message
Passing Interface (MPI) library version 1.2.5 [8] [9].
Access to the search files is realized through the
Win32 application programming interface, in order
to support files of huge sizes, based on the provided
64bit addressing.

3.3 The Dataset
The developed workload allocation model is tested us-
ing a number of files of sizes ranging from 161MB
and up to 3575MB. These text database files con-
tain the Homo sapiens genome and are obtained from
the public section of GenBank National Institutes of
Health [7], part of the International Nucleotide Se-
quence Database Collaboration. The utilized pattern
sizes range from 3bytes to 60bytes.

3.4 Results Analysis
As found experimentally, pattern size does not notice-
ably affect performance and only extreme variations
in pattern size are expected to have a minimum im-
pact [10]. Results from the use of only one pattern are
shown for that reason.

As the search file size increases, the benefits from
parallelization in this implementation become more
noticeable, because the higher computation require-
ments overlap the communication time. Thus, there
is a noticeable drop in the performance for the two
smallest files as the system scales. As depicted in

Figure 2: Total execution time for different search
files with a pattern of 3 bytes

Figure 3: Communication time for all search file
scans using the 3 bytes pattern

Figure 2 when all nodes are utilized the total execu-
tion time for all search files is roughly identical. This
is because communication overhead increases as the
number of nodes increase and is almost equivalent for
all search files as seen in Figure 3. Hence, the over-
head of communication overlaps the gains from par-
allelization in this case, being clearly visible for files
that require less computation, compared to a sequen-
tial implementation.

To evaluate and compare the performance of the
parallel dynamic workload allocation implementation
with the static one [12], supplementary tests are pre-
sented below. The main characteristic of the static
implementation is that it (statically) assigns the same
amount of work to all nodes, including the root, and
ignores workstation performance characteristics. The
static and dynamic workload allocation versions are
tested in a heterogeneous environment utilizing four,
eight and sixteen processors. In each case, only half of
the workstations are of the same type. Since the static
implementation is relaxed, the root node has no im-
plementation specific management duties and hence
all nodes take part in the computation process. Con-

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)



Figure 4: Speedup based on the average of results
using all patterns

Figure 5: Parallelization efficiency based on the aver-
age of results using all patterns

sequently, for comparability reasons, one additional
node is added in each of the dynamic workload al-
location implementations to assume the role of the
pool manager, for the same level of available data par-
allelism to be exploited. Results from the compari-
son using the smallest and largest search files are pre-
sented in Figures 6 and 7.

The outcomes of the comparison indicate a satis-
factory performance of the dynamic implementation
for the largest search file. This further supports the
conclusion that the benefit from dynamic allocation
is mostly visible for files that require more computa-
tion, in which case the percentage of the communi-
cation overhead in the total execution time is small.
Still, as the utilized multicomputer scales and compu-
tation time is significantly reduced, the communica-
tion overhead becomes noticeable. Additionally, for
very small files any advantages of this implementation
are hidden by the communication time. Note though
that the performance difference for the two versions is
between 0.1 and 0.2 seconds for the small file, while
the benefit from the dynamic adaptation for the large
file is in the range of 1 to 5 seconds.

Figure 6: Static VS Dynamic Performance Compari-
son (Search File: 161MB)

Figure 7: Static VS Dynamic Performance Compari-
son (Search File: 3575MB)

In contrast to the satisfactory performance of the
simple pool manager, the secure data pool manager
showed extremely poor results, as expected, mostly
due to the slow 100Mbit/s Ethernet interconnection of
the networked workstations that was available, which
cannot be compared to local I/O read times, in con-
junction with the relatively fast computation times that
characterize the pattern matching problem on the as-
sembled parallel system. Figures 8, 9, and 10 show
the total execution time as well as the computation and
communication times, respectively. Note that the im-
plementation is not compared with the static workload
allocation version, since it would have no meaning un-
der the available test environment.

Although, computation times decrease indicat-
ing good speedup values, the total execution time is
severely limited by communication (Figure 10) and
thus results are extremely poor. Actually, the time re-
quired to run the application is roughly equal to the
time required to copy the search file from one node to
another, based on a transfer rate of 10MB/s achieved
at best in an 100Mbit/s Ethernet. The only notice-
able improvement in the execution time appears in the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)



Figure 8: Execution time for different search files
with a pattern of 3 bytes

Figure 9: Computation time for different search files
with a pattern of 3 bytes

transition from 2 to 4 nodes (Figure 8). This is due
to the fact that when using two nodes, there is only
one worker and the application does not at all take ad-
vantage of data parallelism. However, when the nodes
become four, three of them are workers and thus par-
allelization is exploited. This also validates the three-
fold improvement of the computation time in the tran-
sition from two to four nodes, compared to twofold
improvements that appear as processor numbers dou-
ble and support the theory in the case of a relaxed al-
gorithm (Figure 9). In all other cases the benefits from
parallelization are hidden by communication time.

Communication impact on system performance
is evident in the speedup obtained separately from
the average execution and computation times using
all patterns. Speedup results, based on computation
time (Figure 12), show excellent implementation per-
formance that supports the theory: speedup increases
almost linearly along with the number of processors.
It should be noted that, the root does not take part
in the computation process, so the number of proces-
sors actually scanning the search file is one less than
the number shown. In contrast, the speedup acquired

Figure 10: Transmission time for various search file
sizes with a pattern of 3 bytes

form the total execution time (Figure 11), which in-
cludes communication time, is extremely poor to such
an extent which leads to the conclusion that the use
of more than four nodes is pointless, when solving
the parallel pattern matching problem over a slow net-
work interconnection. This simply happens because
the network is unable to sustain a fast enough data rate
to each processor, making obvious the communication
overhead in the total execution time.

Figure 11: Speedup based on average execution times
of all patterns for the four search files

4 Conclusion Remarks
A dynamic workload allocation model, based on
a pool manager implementation was investigated,
herein. The implementation exhibits an excellent per-
formance for larger files that require more process-
ing time. For such files the communication time with
the pool manager is negligible to the total execu-
tion time. Hence, there appears a significant perfor-
mance increase in a heterogeneous system configura-
tion, compared to the static workload allocation ap-
proach [12]. On the other hand, small files present
a slightly worst performance mainly due to the over-

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)



Figure 12: Speedup based on average computation
times of all patterns for the four search files

head imposed by the pool manager and the intercom-
munication infrastructure. Furthermore, as the cluster
scales the computation time becomes smaller while
the communication overhead increases, leading to a
further performance drop. It is expected that for larger
cluster configurations utilizing 128 or even 256 work-
stations, the pool manager can become a significant
performance bottleneck. In such configurations the
role of the pool manager may have to be assigned
to more than one node, following an appropriate load
balancing approach [11].

The data secure pool manager adaptation was mo-
tivated by both security and ease of data management
reasons. The approach suggests that all data should be
stored in only one workstation, the secure root node.
Consequently, performance can be severely limited by
local I/O read speed and network transmission speed,
which was the case in the test environment. This re-
sulted in extremely low performance compared to the
simple pool manager and the static workload alloca-
tion version, to a point where parallelization gains
are completely lost due to communication. Still, it
is expected that given a faster network interconnec-
tion, system performance should be much better. Fur-
thermore, other data parallel problems with a more
complex computation phase could also perform bet-
ter. Then the benefits from having the dataset local
in only one node in conjunction with parallelization
should be apparent. Both of the above research ques-
tions are left open for future work.

References:

[1] J. Hennessy and D. Patterson, Computer Ar-
chitecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Third Edition, 2003

[2] V. Donaldson , F. Berman and R. Paturi, Pro-
gram Speedup in a Heterogeneous Computing

Network, Journal of Parallel and Distributed
Computing, vol. 21, no. 3, 1994, pp. 316–322

[3] Aho Alfred, Corasick Margaret. (1975). Effi-
cient String Matching: An Aid to Bibliographic
Search. Association of Computing Machinery
Inc.

[4] C. Christian and L. Thierry, Handbook of Ex-
act String Matching Algorithms, Kings College
Publications, 2004

[5] A. Tanenbaum, (2002), Computer Networks,
Prentice Hall Publishing, Fourth Edition, 2002

[6] G. Pfister (1998), In Search of Clusters, Second
Edition, Prentice Hall, 1998

[7] GenBank: National Institutes of Health genetic
sequence database
URL: http://www.ncbi.nih.gov/Genbank

[8] D. Ashton, W. Gropp and E. Lusk, Installa-
tion and User’s Guide to MPICH, a Portable
Implementation of MPI Version 1.2.5. URL:
http://www-unix.mcs.anl.gov/mpi/mpich/

[9] The Message Passing Interface Forum, MPI: A
Message Passing Interface Standard
URL: http://www.mpi-forum.org/

[10] P. Michailidis and K. Margaritis, Parallel Text
Searching Application on a Heterogeneous Clus-
ter of Workstations, Proceedings of the 2001 In-
ternational Conference on Parallel Processing
Workshops IEEE (ICPPW’01), 2001a, pp. 1530–
2016

[11] R. Buyya, High Performance Cluster Comput-
ing: Architectures and Systems, Prentice Hall
PTR, 1999

[12] G. Ivanov, A Study of Parallel Programming
Techniques on a Cluster of Workstations, IST
Studies, University of Hertfordshire

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp287-292)


