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Abstract: – When we speak about the buffer overflow period we mean the time interval in which the
queue size is equal to the capacity of the buffer. Thus packets or cells arriving during this period are
lost. The distribution of the length of this interval is recently gaining attention as a very informative
characteristic of the queueing performance. In this paper the numerous results related to the distribution
of the buffer overflow period in a constant service time queue are presented. In particular, they include
formulas for distribution functions, probability density functions, expected values, limiting distributions
for a large buffer. The queueing models supporting single and batch arrivals are considered.
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1 Introduction

The classical approach for evaluation of queueing
performance of traffic buffering in network switches
is based on such characteristics as steady-state (or
transient) queue size distribution, actual (or vir-
tual) waiting time distribution, cell (or packet) loss
ratio. Recently one may observe a growing pop-
ularity of other performance measures. Some au-
thors indicate that, instead of widely used cell loss
ratio, the transient time until the first buffer over-
flow occurs can be more meaningful. Detailed argu-
ments are presented, for instance, in [13] and they
are based on widely-known properties of observed
traces of networks’ traffic. The time of the first
buffer overflow is also called the first passage time
and the recent account of the computational tech-
niques for finding its distribution may be found by
the reader in [3].

Another very informative characteristic is the
duration of the buffer overflow period. The buffer
overflow period is the period in which the buffer is
full and arrivals are not accepted. It also can be de-
fined as the remaining service time upon reaching a

full buffer state. The importance of the distribution
of the buffer overflow period is connected with the
fact, that its form is responsible for the probabilis-
tic structure of losses caused by the buffer overflow.
In other words, two systems with the same loss ra-
tio can behave in a very different way if they have
different distributions of the buffer overflow period.
In one of them we may observe rather single losses,
while in the other the losses may have tendency to
occur in groups.

In order to distinguish the difference between
such queueing systems we use the n-consecutive cell
loss probability (n−CCL prob.). It is said to be the
probability, that during one busy cycle, at least once
a group of n consecutive arrivals are all lost owing
to buffer overflow. Knowing the distribution of the
buffer overflow period, we are able to derive n−CCL
probabilities (see [4], formulas (26)-(28)).

The duration of the buffer overflow period is not
only an interesting characteristic in its own right but
also appears as a problem in the diffusion approx-
imation of finite capacity systems (see [12]) or in
analysis of threshold-based queues (see [6]).
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In this paper a collection of results on the dis-
tribution of the buffer overflow period in a con-
stant service time queue is presented. The following
model of the queue is considered: Cells (packets,
customers) arrive according to a Poisson process
with intensity ν and they are served individually
with the constant service time equal to d. The ca-
pacity of the buffer is finite and equal to b (includ-
ing service position). In Kendall’s notation such a
system is denoted by M/D/1/b. In addition, in
section 4 a batch arrival system (MX/D/1/b) is
considered. Namely, we allow arrivals of groups of
cells where sizes of consecutive groups are indepen-
dent, identically distributed with discrete distribu-
tion {a0, a1, a2, . . .},

∑∞
i=0 ai = 1.

The system with the constant service time is
worth studying at least for two reasons. Firstly, the
constant service time in the meaning of transmission
time is one of the most important types of service
time from the practical point of view. Secondly, its
special form causes significant simplification in the
analysis and therefore the results are less complex
in numerical computations and easy to apply. De-
tailed calculations and proofs are based on a well-
established methodology and the interested reader
can easily reconstruct them using the remarks and
references given below the theorems.

For the previous results connected with the du-
ration of the buffer overflow period (or, equiva-
lently, remaining service time) we refer the reader to
[2, 4, 7, 8, 9, 10, 11, 12]. All of them, beside [12], are
devoted to the general case, in which the form of the
service time distribution is not further specified. In
particular, the equilibrium distributions of remain-
ing and past service times upon reaching a target
level in the M/G/1 queueing system are presented
in [2]. In [10], chapter II.5.10, studies of a similar
subject, namely the remaining interarrival time in a
G/M/1 queue are presented. Some of the properties
of the average remaining service time in the G/G/1
model are shown in [11]. In paper [12], approximate,
based on heuristics formula for the mean duration
of the buffer overflow period in the case of constant
service time and a Poisson input stream is obtained.
The limiting distribution (as b →∞) of the remain-
ing service time distribution in an M/G/1/b queue
is determined in [4]. In [7], an explicit form of the
buffer overflow period distribution in the M/G/1/b
model is shown. Finally, the analysis of the buffer
overflow period in a batch arrival queue with a gen-

eral service time is carried out in [8, 9]. In particu-
lar, formulas for the distribution of this period and
their asymptotic behaviour (as buffer size goes to
infinity) are presented.

2 Definitions and notation

The buffer overflow period is formally defined in the
following way. Let X(t) denote the queue size at
the moment, t of the system. Let the initial queue
size be X(0) = n where 0 ≤ n < b. By τ+(n, b)
we denote the time of the first buffer overflow (or
first passage time). Formally τ+(n, b) = inf{t > 0 :
X(t) = b}. Let ζ(n, b) stands for the first departure
moment after τ+(n, b). The buffer overflow period
is defined to be β(n, b) = ζ(n, b)− τ+(n, b).

Usually we pay a special attention to two initial
queue sizes. For n = 0 the distribution of the buffer
overflow period is called the first hit distribution,
while for n = b−1 – the subsequent hit distribution.
In queueing systems with a Poisson input stream
only the duration of the first buffer overflow period
depends on the initial queue length n, every other
has the initial queue length equal to b − 1. There-
fore we may think of the first hit distribution as
a transient characteristic while the subsequent hit
distribution as a stationary one.

Throughout the article the following notation
will be used:

P( · ) - the probability

ν – the intensity of the Poisson input stream

d – the duration of the service of one cell (con-
stant)

b – the capacity of the buffer

Hn,b(z) = P(β(n, b) < z) – the distribution
function of the remaining service time

Hb(z) = P(β(b − 1, b) < z) – the subsequent
hit distribution function

H(z) = limb→∞Hb(z) – the subsequent hit
distribution function for a large buffer

H(z) = limb→∞H0,b(z) – the first hit distrib-
ution function for a large buffer

hn,b(z) = H ′
n,b(z) – the probability density

function of the remaining service time
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hb(z) = H ′
b(z) – the subsequent hit probabil-

ity density function

h(z) = H ′(z) – the subsequent hit density
function for a large buffer

h(z) = H
′(z) – the first hit density function

for a large buffer

M – the expected value for H(z),

m – the expected value for H(z)

I(x ≤ y) =

{
1 if x ≤ y,

0 if x > y.

δi,j - the Kronecker symbol (δi,j = 1 if i = j
and 0 otherwise)

3 Results for a single-arrival in-
put stream

In this section we assume that cells arrive singly.
Thus the offered load (traffic intensity) is just

ρ = νd.

Theorem 1. For the M/D/1/b queue it holds true
that:

Hb(z) = 1−
∑b−1

k=1 Ak(z)(Rb−k −Rb−1−k)
Rb−1 −Rb−2 + δb,1 − δb,2

, (1)

Hn,b(z) = 1+
b−n∑

k=1

Ak(z)Rb−n−k

−(1−Hb(z))(Rb−n−1 + δb−n,1), (2)

hb(z) = −
∑b−1

k=1 ak(z)(Rb−k −Rb−1−k)
Rb−1 −Rb−2 + δb,1 − δb,2

, (3)

hn,b(z) =
b−n∑

k=1

ak(z)Rb−n−k +hb(z)(Rb−n−1 +δb−n,1),

(4)
where

Ak(z) = I(z ≤ d)ν
∫ d−z

0

e−νu(νu)k−1

(k − 1)!
du, (5)

ak(z) = I(z ≤ d)ν
−((d− z)ν)k−1e−(d−z)ν

(k − 1)!
, (6)

and
R0 = 0,

Rk+1 = eνd(Rk−e−νd
k∑

n=0

(νd)n+1Rk−n

(n + 1)!
+δ0,k), k ≥ 0.

(7)

The proof of (1) and (2) can be obtained using
the same mathod as in the proof of Theorem 3 from
[7]. (3), (4) and (6) were obtained by calculating
derivatives of (1), (2) and (5), respectively.

Theorem 2. For the M/D/1/b queue with ρ 6= 1
it holds that:

H(z) = 1− I(z ≤ d)
e(x0−1)(d−z)ν − 1

x0 − 1
, (8)

H(z) =
H(z)− ρ + I(z ≤ d)ν(d− z)

1− ρ
, (9)

h(z) = I(z ≤ d)νe(x0−1)(d−z)ν , (10)

h(z) =
h(z)− I(z ≤ d)ν

1− ρ
, (11)

M =
e(x0−1)νd − νd(x0 − 1)− 1

(x0 − 1)2ν
, (12)

m =
M − ρd/2

1− ρ
. (13)

where x0 is a positive solution of the equation

eν(x−1)d = x.

Methodology for obtaining h(z) and h(z) is
given in [4], where the general case is investigated.
Then, by integrating (10) and (11), it is easy to get
(8) and (9). (12), (13) follow easily from (8) and
(9).

4 Results for a batch-arrival in-
put stream

In this section we extend the queueing model by
allowing batch arrivals. Precisely, instead of single
arrivals we assume arrivals of groups of cells, where
sizes of groups are independent and identically dis-
tributed with discrete distribution {a0, a1, a2, . . .},∑∞

i=0 ai = 1. Number ai denotes the probability of
the event that arriving batch has size i. Note, that
if a0 > 0, then in fact some arrivals are virtual and
they cause only an extension of the interarrival time.
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This makes the system more flexible for modeling
the input stream. As previously, cells are served in-
dividually and service time for one cell is d. For a
recent methodology for finding basic characteristics
(queue size, waiting time) of such a system we refer
the reader to [5].

By a(x) we denote here the generating function
for distribution {ai}, namely

a(x) =
∞∑

i=0

xiai.

The offered load of the system is

ρ = νda′(1).

Theorem 3. For the MX/D/1/b queue it holds
true that:

Hb(z) = 1− Cb(z)− I(z ≤ d)(1−∑b−1
k=0 ak)∑b

k=1 Rk−1ab−k + ab−1 −Rb−1 − δb,1

,

(14)

Hn,b(z) = 1+
b−n∑

k=1

Ak(z)Rb−n−k

−(1−Hb(z))(Rb−n−1 + δb−n,1), (15)

hb(z) =
−cb(z)∑b

k=1 Rk−1ab−k + ab−1 −Rb−1 − δb,1

,

(16)

hn,b(z) =
b−n∑

k=1

ak(z)Rb−n−k +hb(z)(Rb−n−1 +δb−n,1),

(17)
where the sequences Rk, Ck(z), ck(z), Ak(z) and
ak(z) have generating functions:

R(x) =
∞∑

k=0

xkRk =
x

e−νd(1−a(x)) − x
, (18)

C(x, z) =
∞∑

k=1

xkCk(z)

= I(z ≤ d)
x2(a(x)− 1)(e−ν(d−z)(1−a(x)) − 1)

(x− 1)(e−νd(1−a(x)) − x)
,

(19)

c(x, z) =
∞∑

k=1

xkck(z)

= −I(z ≤ d)
νx2(a(x)− 1)2e−ν(d−z)(1−a(x))

(x− 1)(e−νd(1−a(x)) − x)
, (20)

A(x, z) =
∞∑

k=1

xkAk(z)

= I(z ≤ d)
x

x− 1
(e−ν(d−z)(1−a(x)) − 1), (21)

a(x, z) =
∞∑

k=1

xkak(z)

= I(z ≤ d)
νx(1− a(x))

x− 1
(e−ν(d−z)(1−a(x))). (22)

Formulas for Hb(z), Hn,b(z) can be proven us-
ing the methodology given in [9]. Densities (16),
(17) were obtained by differentiation. We have to
be careful when using them, as they are sometimes
defective (integrable to c < 1). This is due to the
fact that distributions Hb(z), Hn,b(z) may have a
discrete component, namely an atom of probability
mass at point z = d. There is a simple explana-
tion of this phenomena: one, large enough, batch
can overflow the buffer in one step starting from the
empty queue and buffer overflow period has length d
in this case. As regards the numerical computation
aspect of (14), (15), we do not have explicit formulas
for coefficients Rk, Ck(z) and Ak(z). To overcome
this problem, we can use one of the procedures for
the numerical generating function inversion [1].

Theorem 4. For the MX/D/1/b queue with ρ 6= 1
it holds that:

H(z) = 1− I(z ≤ d)
e(a(x0)−1)(d−z)ν − 1

x0 − 1
, (23)

H(z) =
H(z)− ρ + I(z ≤ d)a′(1)ν(d− z)

1− ρ
, (24)

h(z) = I(z ≤ d)
(a(x0)− 1)νe(a(x0)−1)(d−z)ν

x0 − 1
, (25)

h(z) =
h(z)− I(z ≤ d)a′(1)ν

1− ρ
, (26)

M =
e(a(x0)−1)νd − νd(a(x0)− 1)− 1

(x0 − 1)(a(x0)− 1)ν
, (27)

m =
M − ρd/2

1− ρ
. (28)

where x0 is a positive solution of the equation

eν(a(x)−1)d = x.

Methodologies for obtaining H(z) and H(z) are pre-
sented in [9] and [8], respectively. Then, obtaining
densities and expected values is straightforward.
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5 Numerical examples

Now we can easily obtain a great variety of numer-
ical examples depending on parameters of the sys-
tems (ν, d, b, {ai}) and on the type of characteristic
we want to analyse. Figs. 1 - 5 present sample re-
sults for single-arrival input stream, while Figs. 6,
7 present sample results for a batch-arrival input
stream with the following batch size distribution:

ai = 0.1, i = 1, . . . , 10.

In particular, in Fig. 1 the dependence of the
subsequent hit density, hb(z), on b is presented. Fig.
2 shows the dependence of the subsequent hit den-
sity, hb(z), on ν. In Fig. 3 the dependence of subse-
quent hit density, hb(z), on d is displayed. Figures
4, 5 present the comparison of the first and the sub-
sequent densities for a large buffer (h(z) vs h(z)).
Figs. 6, 7 show the average duration of the buffer
overflow period for a large buffer as a function of ν
and d, respectively.
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Figure 1. The dependence of subsequent hit density,
hb(z), on b. Single-arrival input stream, d = 1, ν = 0.1.
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Figure 2. The dependence of subsequent hit density,
hb(z), on ν. Single-arrival input stream, d = 1, b = 5.
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Figure 3. The dependence of subsequent hit density,
hb(z), on d. Single-arrival input stream, ν = 1, b = 5.
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Figure 4. First and subsequent densities for large buffer
(h(z) vs h(z)). Single-arrival input stream, d = 1, ν = ρ =
0.5.
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Figure 5. First and subsequent densities for large buffer
(h(z) vs h(z)). Single-arrival input stream, d = 1, ν = ρ = 2.
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Figure 6. The average duration of the buffer overflow pe-
riod for a large buffer as a function of ν. Batch-arrival input
stream, d = 1, ai = 0.1 for i = 1, . . . , 10.
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Figure 7. The average duration of the buffer overflow pe-
riod for a large buffer as a function of d. Batch-arrival input
stream, ν = 1, ai = 0.1 for i = 1, . . . , 10.

6 Conclusions

In the paper formulas for ten basic characteristics
(Hn,b, Hb, H, H, hn,b, hb, h, h, M and m) of the
distribution of the buffer overflow period are pre-
sented, both for systems with single and batch ar-
rivals. The duration of the buffer overflow period is
an interesting and informative characteristic of the
queueing performance.

The numerical examples indicate that, even for
such a simple service time distribution as a deter-
ministic one, there exists a surprising diversity of
shapes of the distribution of the buffer overflow
period. Due to this fact, the consecutive losses

may have significantly different statistical structure
depending on system parameters. Therefore, the
buffer overflow period can seriously influence the
performance of the system.
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