
Clustering mechanism for content-based system in DHT-based overlay networks

EMILIANO CASALICCHIO1, FEDERICO MORABITO2, FABRIZIO DAVIDE2, GIOVANNI CORTESE2
University of Roma "Tor Vergata", Computer Science Department1

Via del Politecnico 1 - Rome1

Telecom Italia Learning ServicesDepartment2

Viale Parco de Medici 37, Rome2

ITALY

Abstract: A generic pub/sub communication system (often referred to in the literature as Event Service or Notification
Service) is composed of a set of nodes distributed over a communication network. Clients to the systems are divided
according to their role into publishers, which act as producers of information, and subscribers, which act as consumers of
information. Clients are not required to communicate directly among themselves but they are rather decoupled: the
interaction takes place through the nodes of the pub/sub system. There are several architectural options and subscription
models for publish-subscribe communication. We focus on content-based publish subscribe, and we explore an architectural
options for realizing the broker overlay, namely peer-to-peer structured. We propose a novel adaptive content-based
subscription management system, relying on a Distributed Hash Table routing infrastructure. We define a model for the
event space guaranteeing the expressiveness for any application domain. Also we provide mechanism to dynamically
identify groups of users with similar preferences (multicast group) based on clustering algorithms for the users preferences.

Key-Words: - Content-based Publish/Subscribe, Multicast, Peer-to-Peer system, DHTs, clustering

1 Introduction
Content-based Publish/Subscribe (CBPS) interaction
paradigm is suitable for a variety of large scale dynamic
applications: news delivery, stock quoting, air and
metropolitan traffic control, on-line games, dissemination of
multimedia contents, dissemination of auction bids, services
and resources discovery, remote control of critical
infrastructures and management of large scale systems. In
contrast to their flexibility and expressiveness, scalable
CBPS systems are difficult to implement and the proposed
solutions are not again mature. The publish/subscribe
interaction paradigm provides subscribers with the ability to
express their interest in an event or a pattern of events, in
order to be notified subsequently of any event, generated by
a publisher, that matches their registered interest. The
different ways of specifying the events of interest have led
to several subscription schemes, the channel-based, the
topic-based (or subject-based), and the content-based.
The publish/subscribe scheme consists of a set of nodes that
asynchronously exchange notifications decoupled by a
notification service that is interposed between them [1].
When a notification is produced by a subscriber, it expresses
node’ interest in receiving an event, or a pattern of events.
The publisher produces an event, that is asynchronously
propagated to all subscribers that registered interest in that
given event. The pub/sub paradigm provides 1) to the
subscribers 1a) the ability to express their interest
(subscription) and 1b) to be notified of any event that
matches the subscription and 2) to the publishers to publish
information (event) that will be efficiently distributed
(notification) to whose nodes that are interested in receiving.

The main characteristic of this event-based interaction
style lies in the full decoupling in time, space and
synchronization between publishers and subscribers. The
publishers do not need to address the subscribers and vice
versa, facilitating to add, mode or remove new subscribers
and publishers. The communication among the nodes is
inherently asynchronous, decoupling the production and
consumption of information, with a relevant increase in
terms of scalability and ability of locally computing
(subscribers can perform concurrent jobs, while waiting for
an event). Publishers and subscribers do not need to be
available at the same time: a subscription causes
notifications to be delivered even if producers join after the
subscription was issued. The communication initiated by
the effective publishers of information and it is full
event/information-driven.

2 Problem Formulation
Publish/subscribe systems exhibit a lot of interesting
challenges, but a fundamental aspect in any
publish/subscribe system is the expressiveness of the
notification selection, i.e., how consumers specify
subscriptions. Choosing the notification selection
mechanism is perhaps the most important (and most
difficult) choice to be made when developing a notification
service. Exists different ways of specifying the events of
interest that have led to several subscription schemes, that
are topic-based and content-based publish/subscribe
subscription scheme. In the topic-based, participants can
subscribe themselves to individual topics which are

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

identified by keywords. Topics are similar to the notion of
groups. An example of such systems is Scribe. Scribe [2] is
an event notification infrastructure for topic-based publish-
subscribe applications implemented on the top of Pastry
[3], a DHT infrastructure. The topic, identified by a key
called the topicId, represents a group of some subscribers
that want to receive all generated events for the topic. The
multicast tree, rooted at the rendez-vous point, is created
using a scheme similar to reverse path forwarding and
permits to disseminate the events published in the topic.
Any node with the appropriate credentials can publish
events that will be disseminated to all the topics
subscribers along the multicast tree associated to the topic.
The main drawback of topic-based is the lack of
expressiveness. The content-based is more powerful than
the topic-based, giving the users the ability to specify their
subscription expressing their interest. In the content-based,
the subscription schema is based on the actual content of
the considered events and not according to some pre-
classified and existing criterion (the topic-name). The
participants can subscribe to logical combinations of
elementary events and are only notified about composite
pattern of events. SIENA [4] is a wide-area event
notification service, employing an overlay network of
event brokers, which support rich subscription languages.
Also Griphon [5] is a content-based system, obtained with
a similar mechanism. However, they commonly have the
two drawbacks as follows. First, state of the art systems
have static overlay networks consisted of reliable brokers
under the administrative control, or assume that a spanning
tree of entire brokers is known beforehand. Clearly, this is
not feasible when a system involves an enormous number
of brokers, which join and leave the overlay network
dynamically. Second, a broker keeps a large amount of
routing states and its control message overhead is huge.
This is because every broker can be an intermediate router
on the paths of an event dissemination tree. The main
difficult in the design of content-based is to address the
scalability property, that is the ability to provide the event
service across a whole wide-area networks, while
maintaining the expressiveness of flexibility in the
subscription schema. The main issues in design content-
based publish/subscribe systems are the following:
1) to maximize the expressiveness, that is the ability of

the event notification service to provide powerful data
model able to capture information about the events,
able of expressing filter and pattern on the notifications
of interest.

2) To guarantee the scalability that is the ability to
provide the event service across a whole wide-area
networks, while maintaining the expressiveness of
flexibility in the subscription schema.

3) To balance the load among peers in the system.
4) To adapt the network topology and the groups of

common interest subscriptions to the dynamics of the
system.

In this paper, we propose an approach that explicitly
addresses the system adaptability problem and that
represents a trade-off solution between the first two issues.

3 Problem Solution
As previously mentioned, our paper aims to solve three
main issues:
1) to realize a system with an high degree of

expressiveness.
2) To guarantee the scalability with respect to the number

of subscribers, publishers and with respect the size of
the event space.

3) To adapt the network topology and the groups of
common interest subscriptions to the dynamics of the
system.

The first problem is addressed proposing a flexible
application domain data model that can be applied to any
specific application domain. Limiting the number of
multicast groups is one of the main characteristic of the
proposed data model, exploiting the intrinsic scalability
provided by the application layer multicast (DHT-based) to
solve the problem. The adaptability of our system is
guaranteed by a mechanism that automatically evaluates
the efficiency of the actual configuration and starts the
multicast groups reconfiguration process.
Although, two hard problems are still unresolved in the
proposed approach:
1) the optimization of the multicast tree reorganization

process;
2) the realization of a fully distributed solution without

introducing the specialized nodes.

3.1 DHT-based overlay network
In general, publish/subscribe systems are build on top static
network infrastructures, and indeed many routing and
forwarding algorithms rely on this static nature. Vice versa,
many applications may benefit from more dynamically
network infrastructures, allowing to scale with respect to
nodes and data. As overlay network, we use the solution
basis on the Distributed Hash Tables (DHT) infrastructure.
Distributed hash tables have emerged as infrastructures for
efficient, scalable resource lookup in large peer-to-peer
distributed networks. Such systems are decentralize
scalable, and self-organizing (i.e. often as well, they
automatically adapt to the arrival, departure and failure of
nodes in the network). Such characteristics make DHTs
attractive for building distributed applications [8], [9].
In our solution, we have used a DHT infrastructure based
on Pastry [3], a scalable, distributed object location and
routing substrate for wide-area peer-to-peer applications.
Pastry is a self-organizing overlay network of nodes, where
each node routes client requests and interacts with local
instances of one or more applications. The multicast
communication can be implemented in two flavours,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

network supported and application level multicast. First
one is based on IP multicast model, that allows scalable
and efficient multi-party communication, particularly for
groups of large size. However, the deployment of IP
multicast group requires substantial infrastructure
modifications and is hampered by a host of open problems
such as reliability, flow, and congestion control, security
and access control. Because of the problems facing the
deployment of a network level multicast service, we have
adopted an application-level multicast solution on peer-to-
peer overlays based on tree building. In the tree-based
approach, a tree for each group is built. Multicast messages
related to a group are propagated through its associated
forwarding tree. This form of application-level multicast is
leveraging the object location and routing properties of the
overlay network to create groups and join groups. The
application then creates and manages the tree and uses it to
propagate messages. As application-level multicast
infrastructure, we use Scribe [2], an event notification
infrastructure for topic-based publish-subscribe
applications implemented on the top of Pastry. Briefly, any
node may create a topic (or group). Each topic is identified
by a key called the topicId, obtained by the hashing of the
group’s textual name, for example. The topic represents a
group of some subscribers that want to receive all
generated events for the topic. The node responsible for the
namespace segment containing the topicId is the root of the
tree or the rendezvous point. The multicast tree, rooted at
the rendez-vous point, is created using a scheme similar to
reverse path forwarding and permits to disseminate the
events published in the topic. To subscribe to a topic, a
node routes a message through the overlay to the rendez-
vous point. Any node with the appropriate credentials can
publish events that will be disseminated to all the topic’s
subscribers along the multicast tree associated to the topic.
Scribe scales well because of its decentralized algorithm
and the randomization of overlay addresses ensures that the
tree is well balanced. Scribe also tolerates node and root
failures ensuring fault-tolerance property to the notification
mechanism.

3.2 Problem notation
Here we introduce specific notation we will use in the rest
of the paper.

o Let N denote the number of attributes of the
application domain schema.

o Let Ω define the event space (an N-dimensional
cartesian space).

o Each event being published within the system can
be uniquely described with a single value ω.

o Let V be the set of nodes of the network.
o Let VS be the set of nodes hosting subscribers.
o Let us assume that each subscriber vi has a set of ri

subscription preference expressed by Ii ={bij ,

j=1…ri}. Each bij is an aligned rectangle in space
Ω.

o Let us define I to be the set including all
subscription rectangles.

3.3 Application domain data model
For each application domain, the publishers and subscribers
use a data model representation based on a set of
application dependent attributes. We indicate this set of
attributes as the application schema. Attributes are
characterized by their type, name, and constraints on
possible values, specifying the general format of data and
their possible values (within each application domain).
Each application domain has its own schema, thus multiple
domain schemas can be handled simultaneously by the
same application (and also different applications may run
on the same network). For example, a complex system
management tool may handle simultaneously three domain:
a distributed system management domain, a power grid
monitoring domain and resource discovery domain. The
proposed application domain data model allows
subscribers to specify the subscription preferences,
indicating the attributes and the related range values; and it
allows publishers to disseminate events to the interested
users. The proposed data model, inspired by [6], permits to
represent the application domain through an N-dimensional
cartesian space Ω in which each event can be uniquely
described with a single multidimensional element ω. The
axes of the event space represent the attributes and they are
labelled with the name field contained in the schema, while
the ranges of the axes are specified into the values field, as
shown in Figure 3. Using the proposed abstraction, each
subscription preference of the form [name attribute 1,
range value 1], [name attribute 2, range value 2], [name N
attribute, range value N] is represented as an hyper-
rectangle into the event space. In Figure 1, an example of
schema for the resource discovery domain, for simplicity
composed only by three attributes, is reported. The
graphical representation of the associated event space Ω is
shown in Figure 3.

Figure 1 The schema for resource discovery
application domain

Figure 2 shows an example of preference subscription b,
represented also as horizontal plane in Figure 3.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

Figure 2 An example of subscription preference
description

Figure 3 Graphical representation of the
event schema

4 System architecture
Our solution is based on a two layers architecture. As
shown in Figure 4, on the top of the transport layer we build
a DHT-based multicast application layer based on Scribe
and Pastry. The DHT multicast layer embeds the
application layer multicast protocol and the DHT-based
overlay network, providing to the upper layer, the following
primitives:

1) overlay network management primitives (e.g.
join(), subscribe(), unsubscribe(), lookup(),
route());

2) multicast primitives (e.g. join(), create(),
leave(), multicast()).

The content-based pub/sub functionalities are implemented
by the following three processes:

a. Multicast Group Identification (MGI) process
that associates a subscription bij, to one or more
multicast trees.

b. Multicast Group Matching (MGM) process that
identifies the multicast groups to which deliver
an event ω.

c. Multicast Group Creation (MGC) process that
re-organizes the multicast groups when the
systems state change compromising the
efficiency.

Figure 4 Layers

We propose a solution to create the multicast groups, based
on the dynamical clustering of the subscribers' preferences,
that builds groups composed of nodes with similar interests.

4.1 System state description
For each application domain, the publishers and subscribers
use a data model representation based on a set. The
identification, creation and reorganization of multicast
groups and the solution of the matching problems, require
some knowledge about the system state. The system state
can be descried by the following set:
1) the set of overall subscription I. This set changes during

the time and an overall view of the subscriptions is
needed to dynamically compute at run time the
multicast groups that better represent the system.

2) The set of overall multicast group M. This information
is needed to solve the multicast group matching
problem, and the multicast groups identification
problem.

3) The set of overall events generated in a chosen temporal
windows E. This information could be useful to
optimize the multicast group creation process and the
multicast groups identification problem. Note that the
set of overall events E should be maintained updated
when the system is running.

4.2 Clustering based solution
We group the different pattern of subscriptions into
clusters, using the Minimum Spanning Tree [7] algorithm.
We used the Euclidean distance between centroid of hyper-
rectangles expressing the subscriptions, as distance function
to be minimized The set I of all subscriptions is partitioned
into clusters of different volume. Each cluster ci is a
rectangle in the Ω space of centroid cen(i)=(x1, x2, …. xN).
Note that the coordinates of the centroid are not fixed but
they dynamically change depending on the the pattern of
subscriptions. The clustering based solution associates a
multicast group MG(i) to each cluster ci and then the nodes
in the multicast group MG(i) are organized in the multicast
tree MTree(i) where the centroid cen(i) is the root.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

MTree(i) is responsible for the events and the subscriptions
within the range of the cluster ci.
The Multicast Group Identification problem is solved by
evaluating the intersections among the hyper-rectangle bij,
expressing the preference j of subscriber vi, and the clusters
in the events space. The intercepted clusters determine the
multicast groups to which the subscriber vi will be
associated. Every time an event ω is published, the
Multicast Group Matching process looks for the cluster
containing the event ω and delivers the event ω through the
associated multicast tree. The clusters are organized into a
R-Tree data structure.
The Multicast Group Creation process is responsible to
evaluate the inefficiency due to the actual configuration of
the multicast groups and the dynamics of the subscribers
and publishers. If the efficiency decreases the multicast
group will be reorganized.

4.2.1 Multicast Group Identification process
When a new node joins the overlay network, it receives
from the bootstrap node the following information:

o the access to the network, by the nodeId and the
routing tables;

o the application schema, that contains the list of all
the attributes and their domains and permits the
node to express its own preferences and to publish
the events;

o the R-Tree data structure, representing the set of all
clusters.

When a node vi subscribes for a preference bij, the MGI
process evaluates the interception among the subscription
bij and the clusters. Then it assigns the node to one or more
multicast groups. More formally, the process can be defined
by the following steps:

o Determine the set MG(bij) of the clusters
intercepting the subscription bij.

o Determine the set of centroids cen(bij) of the
clusters in MG(bij).

o Determine the set of the corresponding multicast
tree MT(bij).

o For each multicast tree MTree(k) contained in
MT(bij), subscribe vi to the multicast tree MTree(k)
at the DHT-multicast layer.

If a new subscription does not match any active multicast
tree (meaning that the multicast tree does not exist), a new
multicast tree is then created and the R-tree is modified by a
leaf node insertion.

4.2.2 Multicast Group Matching process
Let us suppose that the publisher node has already joined the
network. The node has already received from the bootstrap
node the application schema and the R-Tree data structure
containing the set of actual clusters. The node can resolve
locally the MGM process, having all the information to
compute the interception between the generated event ω and
the clusters ck. More formally, we can formulate the MGM

process by the following steps:
o Determine the cluster ck containing the event ω.
o Determine the centroid cen(k) of the cluster ck.
o If the multicast tree MTree(k) exists, deliver ω

MTree(k), else drop the event ω.
As previously mentioned, during the step 1 the process
determines the cluster ck searching the R-Tree structure
organizing the actual clusters. The MGM process need as
input only local information: the event ω and the set of
clusters. Thus it can be locally processed by each node in
the overlay network.

4.2.3 Multicast Group Creation process
This process is responsible to evaluate the inefficiency of
the actual configuration with respect to the pattern of
subscriptions and the number of multicast groups. On the
basis of the evaluated inefficiency, the process re-organizes
the multicast groups and the associated multicast trees. As
final result of the re-organization, the subscribers will be
associated to more efficient multicast groups with respect
to the existing groups.
Periodically the MGC process executes three macro-steps:
1) evaluate the inefficiency of the actual clusters

configuration.
2) Estimate the impact, on the efficiency and on the cost

constraints, of a new clusters configuration.
3) Re-organize (if needed) the multicast trees, on the

basis of the new multicast groups. This means to map
all existing subscriptions to the new multicast groups.

The definition of system inefficiency is reported in Section
4.2.4. The pseudo-code for the Multicast Group Matching
process taking in account the system inefficiency as
described in Section 4.2.4, is here reported in the
following.

(1) Choose K
(2) Choose the cost constraint c;
(3) Compute the new set of clusters {c1, c2,..., ck,}
(4) If γI ∆FN(I)+ K γR <c
Then
(5)Distribute the new set of clusters; to all the
publishers and subscribers;
(6)Re-organize the multicast groups (and multicast
trees);
Else
(7) set K=K'
(8) go to step (3)

4.2.4 System inefficiency
The system inefficiency clustering is caused by
subscriptions not correctly assigned to the existing clusters.
A subscription not assigned to the right cluster is a source
of false negatives, while a subscription that intercepts more
than one cluster would be a source of duplicated messages
(false positives). We use the number of false negatives as
performance metric considering not acceptable that some

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

event could be lost and that some subscribers will not
receive events they are looking for.
The false negatives number for the subscription bij with
respect to the current set of clusters {c1, c2,..., ck,} is defined
as FN(bij), while the overall system inefficiency is FN(I).
After varying the set of clusters {c1, c2,..., ck,}, the variation
of the inefficiency can be measured as the difference among
the new system inefficiency and the old one. We call the
variation of inefficiency ∆FN(I).
If ∆FN(I) < 0 then the new set of clusters decreases the
number of false negatives. Otherwise, if ∆FN(I)> 0 the new
set of clusters increases the inefficiency and if ∆FN(I) = 0,
the effects are neutral for the inefficiency.
If we define γI the cost associated to a unit of inefficiency,
then the cost of the overall inefficiency is γI FN(I) and the
gain (or lost) associated to the new set of clusters is γI
∆FN(I). The multicast group reorganization cost can be
assumed proportional to the number n of multicast groups
involved in the reconstruction phase. The number of
clusters is fixed (K), thus the cost of re-configuration of the
multicast group is constant (except if we decide explicitly
to increase or decrease K). If we define γR the cost to
reorganize a multicast group, the overall cost to reorganize
K groups is K γR. The set of clusters is distributed over all
the nodes only if the cost to reorganize the clusters satisfies
the following cost constraint, that is γI ∆FN(I)+ K γR <c.
where the constant c can be appropriately selected.
If c<0 means that we accept the reconfiguration (Step 3)
only if gain in efficiency is grater or equal to the cost of the
reconfiguration. If c > 0 means that we accept to
reconfigure the clusters, and then the multicast group, even
if we don't have a direct revenue.

5 Content-based pub/sub primitives
In this section we give an high level description of the
primitives that should support the proposed content based
publish/subscribe system.
These primitives allow to join a network (cb_join()), to
subscribe for a set of events (cb_subscribe()), to publish
events (cb_publish()), to register a subscriber to a multicast
group (cb_register()), to cancel a subscriber from a
multicast group (cb_cancel()) and to notify system state
management actions such as MTree reorganization
(cb_notify()).
They invoke the DHT multicast layer primitives: join(),
lookup(), route(), send(). We briefly describe the Content-
based pub/sub primitives.
cb_join() allows a new publisher or subscriber to join to the
content based network. When the cb_join() primitive is
invoked, the bootstrap node is contacted and the subscriber
node is registered to the overlay network. The bootstrap
node delivers the application schema and the system state
dependent information (for example, the set of overall
subscription I or the set of overall multicast group M). At

the overlay network layer, the cb_join() is mapped into an
overlay join().
cb_subscribe() allows the nodes to subscribe for a
preference bij. This primitive sends the preference bij to the
system and it activates the MGI process to register the
subscription to the appropriate multicast group(s). The
cb_subscribe() invokes one or more subscribe(s) at the
overlay network layer.
cb_publish() allows a node to publish an event. The
cb_publish() primitive activates the MGM process, looking
for the cell or the cluster that contains the event. After that
the multicast group is determined, the primitive delivers
the event to the associated multicast tree using the overlay
network layer primitives lookup(), route() and send()
(depending on the scenario).
cb_register() registers a subscriber to a multicast group.
The primitive is invoked after a cb_subscribe() and in the
multicast group reorganization phase.
cb_cancel() delete a subscriber from the multicast group.
The primitive is implicitly invoked during the clusters
reorganization phase or explicitly invoked when a
subscriber fails or leaves the network.
cb_notify() notifies system state management actions or
events.

6 Conclusion
The proposed approach to adaptive content-based
subscription management is actually a work in progress.
We propose the architecture of the system and we design a
solution to the main emerging problems.
The novelty of our approach, respect the existing solutions,
is in the adaptability of the systems to the load, the
capability to specify a desired level of efficiency and cost
constraints and the scalability, obtained using application
level multicast.
As mentioned before, the load balancing among the peers
and the realization of a fully distributed solution that does
not need specialized servers, still remain open problems.
Indeed ongoing works are aiming to realize a fully
distributed solution for the computation of the system
inefficiency and for the inherent decision making process
in the Multicast Group Creation process.

References:
 [1] P.Th. Eugster, P.A. Felber, R. Guerraoui, A.-M.

Kermarrec, The Many Faces of Publish/Subscribe.
[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A.

Rowstron. Scribe: A large-scale and decentralised
application-level multicast infrastructure. IEEE Journal
on Selected Areas in Communication (JSAC), 20(8),
2002.

[3] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. In Proc. of the 18th IFIP/ACM

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

International Conference on Distributed Systems
Platforms (Middleware 2001), 2001.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Trans. Comput. Syst., 19(3):332{ 383, 2001.

[5] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K.
Miller, B. Mukherjee, D. Sturman, and M. Ward,
Gryphon: An Information Flow Based Approach to
Message Brokering.

 [6] Riabov, A. Z. Liu, Wolf, J.L. and Yu, P.S., Li Zhang,
New algorithms for content-based publication-
subscription systems, Proceedings. 23rd International
Conference on Distributed Computing Systems, 19-22
May, 2003

[7] R. Jain, The Art of Computer System Performance:
Analysis, Techniques for Experimental Design,
Measurement, Simulation and Modeling, John Wiley
and Sons, New York, 1991.

[8] J. Kubiatowicz et alii, OceanStore: an architecture for
global-scale persistent storage, Proceedings of the ninth
international conference on Architectural support for
programming languages and operating systems, 2000.

[9] M. Castro, P. Druschel, Anne-Marie Kermarrec,
A.Nandi, A. Rowstron, A. Singh, SplitStream: high-
bandwidth multicast in cooperative environments,
SOSP '03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp451-457)

