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Abstract

This paper proposes a novel approach to solve the mat-
ting problem on complex images using Markov Ran-
dom Field(MRF) model. Although many natural image
matting methods have been proposed, matting on com-
plex images still remains as a challenge. Our approach,
which we call MRF matting, partitions the image man-
ually into three regions: foreground, background, and
unknown region. Then, the unknown region is roughly
segmented into several joint sub-regions by the user.
In each sub-region, matting labels are defined and mod-
elled as an MRF and assigned to the pixels in unknown
region. Matting problem is then formulated as a max-
imum a posteriori(MAP) estimation problem on this
MRF model and its associated Gibbs distribution. Sim-
ulated annealing is used to find the optimal matting so-
lution. We compute alpha mattes of all the sub-regions
and combine them into a final matte. When matting
on complex images, our approach is demonstrated to
be more robust than existing methods. Experimental
results are shown and compared with other methods in
this paper.
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1. Introduction

The matting problem is to separate of a fractional al-
pha value α(0≤α≤1), a foreground color component F ,
and a background color component B from the color
C of any pixel in a given image. If α is binary valued
(α∈{0, 1}), this kind of matting problem is also called
image segmentation. Matting is a hot research topic
in recent years and used widely in the film and video
production to make special effects.

The matting techniques can be classified mainly as
blue screen matting and natural image matting. If the
background color component B of every pixel is con-
stant, this matting problem is called blue screen mat-

ting, while if B is arbitrary, it will be natural image
matting. Matting is very difficult because it is essen-
tially an under-constrained problem. Therefore, ad-
ditional constraints or user-interactions are required.
Blue screen matting has been summarized nicely by
Smith and Blinn in their paper[1]. Natural image mat-
ting attempts to pull a matte from an arbitrary back-
ground using three basic steps: segmenting the image
into three regions, namely, foreground, background,
and unknown; and estimating the background and fore-
ground color components of each pixel in unknown re-
gions; estimating the alpha value of this pixel. Most of
natural image matting methods [2,3,4,5,6,7] work well
on smooth image. Today researchers begin to pay at-
tention to pulling a matte from complex scene, such as
local Poisson matting[6]. In this paper, we propose a
new MRF model-based matting approach to pull the
matte from complex image.

The remainder of the paper is organized as follows.
We give a review of the existing natural image matting
in Section 2. Our MRF matting method is introduced
in Section 3. We show the results of some examples in
Section 4 and give some discussions about our approach
in Section 5. Our work is summarized and some future
research directions are point out in Section 6.

2. Previous Work

Blue screen matting has been used in the film and video
industry for decades. Main limitation of blue screen
matting is the reliance on a controlled background im-
age. Natural image matting is generally composed of
three steps: region segmenting, color estimating, and
alpha estimating. Most of the natural image matting
methods [2,3,4,5,6,7] begin from a user-supplied trimap
which segments the image into three regions: definitely
foreground, definitely background and unknown region.

In Knockout[2], the estimated F and B are weighted
mean of the colors of pixels along the perimeter of the
foreground and background regions. The final esti-
mated α is a weighted mean of three alpha compo-
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nents calculated in R,G,B channels. Knockout method
is used widely in industry since it is fast. In [3] and [4],
the color samples for F andB are analyzed by PCA and
a mixture unoriented Gaussians respectively. Bayesian
matting[5] partitions the foreground and background
color samples into some clusters. Each cluster is fitted
with an oriented Gaussian distribution. An MAP esti-
mation of α, F and B is calculated simultaneously in
a Bayesian framework. Once F and B are computed,
these methods use a same alpha estimating method to
compute α by projecting color C onto the line seg-
ment FB in RGB color space. Bayesian matting is an
important development for natural image matting. It
can obtain better results than previous methods. One
weakness of these statistical matting algorithms is that
they are slow.

Poisson matting[6] is the most important progress
for natural image matting after Bayesian matting.
Global Poisson matting works well in smooth images
and obtains comparable results with Bayesian matting
in many examples. More importantly, if the results of
global Poisson matting are not satisfactory, local Pois-
son matting can be introduced to refine them using fil-
tering tools. Instead of editing a trimap like most nat-
ural image matting approaches, Poisson matting pro-
vides a completely different way to adjust a matte by
modifying image gradient field. Unlike other methods
to estimate alpha in RGB color space, we presented an
efficient matting method[7] in perceptual color space,
called perceptual matting here. This method separates
the chroma and intensity information of a color and
emphasizes the more significant one. When the image
is smooth, perceptual matting produces modestly bet-
ter matte than Bayesian matting and can extract the
foreground object as fast as Knockout method without
obvious weakening the matting quality.

However, all these methods [2,3,4,5,6,7] are not ad-
equately robust for complex images. The main limi-
tation of [2,7] is that they use a weighted-mean color
estimating method. When the image is complex, F
and B obtained by this color estimating method will
largely bias the true values and can’t be used in the
following alpha estimating. The common problem of
[2,3,4,5] is that they adopt an inadequate alpha esti-
mating method. Their alpha estimating methods will
introduce problems in some cases, which is explained
detailedly in [7]. Global Poisson matting is also not
robust for complex images and will result in a poor
quality mattes in this case. Although local Poisson
matting can refine these mattes using additional tools,
some limitations still remain in Poisson matting. First,
operations in Poisson matting are based on a gray im-
age that is converted from the original color image.

Figure 1: MRF matting flow chart. The input image C is
segmented manually into three regions: foreground, background
and unknown regions. Then the unknown region is partitioned
into several smaller joint sub-regions. In each sub-region, the
foreground and background pixels are clustered. After labelling
and MRF matting, F , B and α of every pixel in this sub-region
are estimated simultaneously. Finally, all the mattes of sub-
regions are then finally combined into a final matte.

This conversion inevitably loses some information of
the original image. Second, although local Poisson
matting refines the matte, it increases extra user in-
teractions at the same time.

Here, a complex image means an image with high
resolution or high color-variation in a small region.
There are a large numbers of complex images around
us. It is necessary to find a matting approach to ex-
tract objects from these images. We call this problem
complex image matting. How to remove the limita-
tions of previous methods while still preserving their
advantages in a largest scale will be always a problem
in complex image matting.

In this paper, we introduce a novel complex image
matting method called MRF matting. This method
produces better results than global poisson matting
and perceptual matting and requires less user inter-
actions than local poisson matting.

3. MRF Matting

Like previous matting techniques, our approach starts
from manually segmenting an input image into three
regions: foreground, background, and unknown region.
Then, the unknown region is segmented into several
joint sub-regions by the user. In each sub-region, mat-
ting labels are defined and modelled as an MRF and
assigned to pixels in unknown region. Matting problem
is then formulated as an MAP estimation problem on
this MRF model and its associated Gibbs distribution.
We compute alpha mattes of all the sub-regions and
combine them into a final matte. Furthermore, we use
a special matting approach to extract foreground ob-
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jects, which obtains better results than MRF matting.
Figure 1 illustrates the flow chart of MRF matting.

3.1. Matting for General Images

Recently, MRF model has attracted much attention in
computer vision community. A detailed description on
MRF modelling can be found in [8] or [9].

In MRF matting, we first segment a complex image
into definitely foreground, definitely background and
unknown region using hand-drawn foreground contour
ΩF and background contour ΩB. The unknown re-
gion is then segmented into several sub-regions. Let
R denote a sub-region, ψF and ψB denote the color
set of the foreground and background pixels in R re-
spectively. We partition ψF , ψB into M and N clus-
ters using the method of Orchard and Bouman[10], as
shown in Figure 2. Let Fi(i∈{1, ...,M}) denote the
weighted mean of colors in the ith foreground cluster,
Bj(j∈{1, ..., N}) the weighted mean of colors in the jth
background cluster.

(a) (b)

Figure 2: Regions segmenting and color estimating. (a) shows
foreground contour ΩF , background contour ΩB , and three sub-
regions: R1, R2, and R3. And (b) shows sub-region R in detail.
In R, the color set ψF of foreground pixels is partitioned into 8
clusters and the color set ψB of background pixels is partitioned
into 7 clusters. Given a pixel s in R, MRF matting system
finds its foreground and background color components F1 and
B2. The partitions F1-F8 or B1-B7 are actually in color space,
not in the x-y space. In fact, clusters F1 etc can represent pixels
which are maybe spatially far away.

Matting problem can be posed as a labelling prob-
lem. Assume that there are K unknown pixels in R.
Let Λ={1, ...,K} index a set of K sites. Each site s is
one unknown pixel in R and Gs(Gs⊂Λ) is the 4 neigh-
borhood system of s. For each pair of Fi and Bj , the
corresponding alpha value αs

(i,j) can be calculated using
perceptual alpha estimation method. In MRF matting,
a label is a triple (Fi,Bj ,α

s
(i,j)). The labelling prob-

lem is to assign a label xs to each site s. A solution
X={xs|s∈Λ} is called a configuration.

In Bayesian matting, the likelihood Lα is assumed
as a constant and its definition derived from statistics
of real alpha mattes is left as future work. This neglect

of Lα will lead to a poor matte with jagged edges, as
pointed out in [11]. In the following, we’ll redefine all
the likelihoods using MRF model.

Let C denote the original image in R. The fore-
ground image F and background image B of C are
independent to each other. The matte A of C is com-
pletely dependent on F and B because A can be de-
rived from F and B using perceptual alpha estimating
method. Therefore, we only need to find the most likely
estimates for F and B. This can be expressed as follows
using Bayes’s rule:

argmax
F,B

P (F,B|C) (1)

= argmax
F,B

P (C|F,B)P (F)P (B|F)/P (C)

= argmax
F,B

P (C|F,B)P (F)P (B).

At the same time, P (F,B|C) can be written as a Gibbs
distribution, dropping the constant term P (C):

P (F,B|C) ∝
1

Z
exp−E,

where
E = U(C|F,B) + U(F) + U(B). (2)

The solution of MRF matting can be obtained by
minimizing a Gibbs energy E. The key step is to define
the likelihood energy U(C|F,B) and the prior energy
U(F) and U(B) of a configuration X .

Likelihood energy. Because we use a perceptual
approach to estimate alpha, consequently, we must find
a perceptual strategy to evaluate the cost of a mat-
ting label. In perceptual alpha estimating method, the
chroma and intensity information of a RGB color are
separated in perceptual color space and the more signif-
icant one is emphasized. Take site s in R for example,
its intensity alpha αs

IN and chroma alpha αs
CH are es-

timated respectively. After their weight W s
IN , W s

CH

are computed, the weighted mean of these two alpha
values yields the final alpha value αs. Hence, we can
define a ratio εxs

as the cost of label xs=(Fi,Bj ,α
s
(i,j)),

for pixel s in X as follows:

εxs
=

{

W s
IN/W

s
CH if W s

IN<W
s
CH

W s
CH/W

s
IN if W s

IN≥W s
CH .

The smaller εxs
is, the more convincing this estimated

alpha is. So, the likelihood energy of a configuration
can be given as a sum of the cost of label :

U(C|F,B) =
∑

s∈Λ

εxs
. (3)

Prior energy. Let Fs(s∈Λ) denote the foreground
color of s in X . We simply use the Euclid distance of
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RGB color space to measure the prior energy of F,B:

U(F) = λF

∑

s∈Λ

∑

r∈Gs

‖Fs − Fr‖ (4)

U(B) = λB

∑

s∈Λ

∑

r∈Gs

‖Bs −Br‖ (5)

where λF , λB are adjustable influence parameters used
to control the influence of U(F) and U(B). In our
implementation, λF and λB are both initially set to
1 and can be adjusted to other values according to
different images and sub-regions.

Line process. When the foreground object has a
hard edge, MRF process will introduce “Manhattan”
artifacts in which the border of the foreground object
in matte often fail to correspond to the edge in original
image. To reduce the effect of “Manhattan” artifacts, a
line process L[12], can be adjoined to MRF model. Let
d denote a line site between site r and site s. if ld=1, an
edge element is “present” at d and the bond between r
and s is “broken”. The likelihood energy is given the
same as before but the prior energy is changed to be
composed of three terms, say U(F|L)+U(B|L)+U(L).
These three terms can be modelled as follows:

U(F|L) = λF

∑

s∈Λ

∑

r∈Gs

‖Fs − Fr‖(1 − ls,r) (6)

U(B|L) = λB

∑

s∈Λ

∑

r∈Gs

‖Bs −Br‖(1 − ls,r) (7)

U(L) = λL

∑

c∈C

Vc (8)

where the influence parameter λL is set to be varied
with the change of λF and λB :

λL = 255.0 × (λF + λB)/2.0.

Energy minimizing. There are totally (MN)K

configurations to the matting problem in R. For a
moderate value ofK=600, supposed that there are only
4 possible alpha values for every unknown pixel, there
will be up to 4600 solutions! The identification of even
near-optimal solution will be extremely difficult. It is
definitely necessary to partition the unknown region
into some smaller sub-regions and find the globally op-
timal solution in each sub-region. There is a relatively
efficient algorithm–simulated annealing[13]–for finding
the globally optimal realization in MRF application.
Our implementation of simulated annealing in MRF
matting lowers the temperature by a factor τ = 0.95.

After the mattes of all sub-regions are computed,
they are merged to a final matte. For pixels in the
overlapped area between two neighboring sub-regions,
we simply take the average of alpha values in two sub-
regions as the final alpha values of these pixels.

4. Results

As pointed out in Section 2, perceptual matting can ob-
tain better mattes than previous methods and can ex-
tract the foreground object as fast as Knockout method
without obvious weakening the matting quality.. Here
we compare our results with perceptual matting and
global poisson matting with some complex images.

In Figure 3, MRF matting produces comparable re-
sults with perceptual matting and global Poisson mat-
ting when the image is smooth. The unknown region
is segmented into 11 sub-regions in this example.

In Figure 4, given a trimap of complex image, the
results of perceptual matting show more noises than
those of MRF matting. There are several blocks of
mismatting regions in the results of global Poisson mat-
ting, because the image gradient fields of these regions
bias the matte gradient fields largely. The unknown re-
gions of these five examples are partitioned respectively
into 23, 15, 16, 25, and 21 sub-regions.

To reduce computation time, we partition the un-
known region into smaller sub-regions. The number of
sub-regions depends on the size and complexity of an
image. Usually, the computation time in a sub-region
varies from several seconds to more than 1 minute.
For a 335×265 image with 15 sub-regions, as shown
in the second example in Figure 4, it takes the com-
puter(CPU: Pentimn IV 1.8G, RAM: 512M) more than
15 minutes to extract the foreground objects, including
the time for user to specify trimap and sub-regions. A
lot of works are left in energy minimizing to improve
the efficiency of our method.

5. Discussions

Complex image matting is a very difficult and essen-
tially underconstraint problem. Some problems still
remain in MRF matting.

First, in alpha estimating, the first and so the most
important step in MRF matting, perceptual alpha es-
timating method we used is not accurate for all cases.
Although progresses have been made, perceptual alpha
estimating method still needs improvements. For ex-
ample, the distance of image space could be added as
an influence factor into the analysis of intensity weight
and chroma weight. Besides, the computing of likeli-
hood and prior energy is another important step. An
effective energy computing process enables the matting
system to pick up the best solution from numerous con-
figurations.

Second, MRF matting is still not robust when an
image has complex foreground objects with hair-like
silhouettes and complex background. Acceptable re-
sults can be obtained when the foreground or/and the
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(a) Original (b) TRIMAP (c) MRF (d) Global Poisson (e) Perceptual

Figure 3: Comparison of matting results of smooth image. We segment the unknown region into 11 sub-regions. Under the
same trimap in (b), the result of MRF matting(c) shows comparable quality with those of global Poisson matting(d) and perceptual
matting(e).

(a) Original (b) TRIMAP&Sub-
regions

(c) MRF (d) Global Poisson (e) Perceptual

Figure 4: Comparison of matting results of complex images. The results of MRF matting exhibit less visible artifacts than those of
global Poisson matting and perceptual matting. The unknown regions of these five examples are partitioned respectively into 23, 15, 16,
25, and 21 sub-regions. These green polygons show what the user-specified division into sub-regions looks like. (This Gandalf image is
composited with a new background image and the wizard Gandalf, who is extracted from an image originally from movie ”The lord of the
Ring” using perceptual matting. Other images are obtained from http://www.research.microsoft.com/vision/cambridge/segmentation/
and http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.)
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background is/are smooth, such as the first example in
Figure 4, where the foreground object is smooth while
the background is high-resolution. MRF matting is
quite suitable for complex images where there are hard
edges in the transition from background to foreground.
In smooth image, MRF matting will partition the back-
ground and foreground colors into much less clusters.
When ψF , ψB are both partitioned into only 1 cluster,
MRF matting will be converted to perceptual matting.

Third, the results of our new method doesn’t depend
on a lot of hand-tweaking to select the right subregions
and doesn’t tune the parameters for each case. Our
method runs automatically with the same settings for
all cases and the sub-region segmentation doesn’t mat-
ter. Sub-region partitioning is mainly for the purpose
of decreasing the computational time.

6. Conclusions and Future Work

In this paper, we have presented a new approach to
complex image matting using MRF model. First, the
image is segmented into three regions, namely, fore-
ground, background and unknown region. Then, the
unknown region is segmented into several sub-regions.
In each sub-region, the colors of background or fore-
ground pixels are partitioned into clusters and the mat-
ting label is assigned to each unknown pixel in this sub-
region. The matting problem is modelled as a global
optimization problem in MRF framework.

Our primary contribution is that we propose a novel
complex image matting approach using MRF model.
With a few more user interactions, this approach can
obtain better results than previous natural image mat-
ting methods when matting on complex images. There
are two main limitations remain in MRF matting.
First, the estimated alpha in the label is still not accu-
rate in every case; Second, the computing of likelihood
and prior energy can be better modelled.

In the future, we hope to improve this method
mainly from three aspects: alpha estimating ,energy
computing and computational time. We also plan to
implement an MRF matting system with adaptive in-
fluence parameters and use Graph-cut[14,15,16] to re-
ducing the computational time.
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