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Abstract:  -  The recent adaptive sliding-mode speed observer [1] is stable in the Lyapunov sense under a 
constant speed condition. During transient state, this observer may become momentarily unstable because 
mechanical dynamics could prominently appear in the time derivative of Lyapunov function (V&). In effect, 
V&may be either positive or negative. A feasible analysis of the transient stability of this observer is to 
determine two important solutions according to the quadratic inequality concerning angular acceleration of the 
rotor. As a consequence, the theorem of Lasalle’s invariant set was employed to explain stability scenario since 
prior ending of transient state up to steady state. Some simulation results are shown to indicate whether this 
observer is stable during the transient state. 
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Nomenclature 
Bt          Viscous friction coefficient (N⋅m⋅s/rad) 
fs           Stator or supply frequency (Hz) 
ieq          Equivalent current in proportion to  

electromagnetic torque 
is           Stator current vector 
isα , isβ        α and β components of stator current (A) 
Jt           Moment of inertia (kg⋅m2) 
K           2 × 2 surface gain matrix 
ksi , kri , kmi , kωi            Integral gains 
ksp , krp , kmp , kωp          Proportional gains 
KT          Torque constant 
Lr          Rotor self-inductance (H) 
Ls          Stator self-inductance (H) 
M          Mutual inductance (H) 
p            Number of poles 
Rm         Core loss resistance (Ω) 
Rr          Rotor resistance (Ω) 
Rs          Stator resistance (Ω) 
s            Slip 
Si           Surface vector 
Te          Electromagnetic torque (N⋅m) 
TL          Load torque (N⋅m) 
Uo         Correction vector 
V           Lyapunov or scalar function 
vs           Stator voltage vector 
α , β           Components in fixed stator coordinates 
σ           Total leakage factor 
ψr          Rotor flux linkage vector 

ψrα , ψrβ       α and β components of rotor flux (Wb) 
ωs           Stator angular velocity (rad/sec) 
ωm          Mechanical shaft speed (rad/sec or rpm) 
ωr           Electrical rotor (angular) speed (rad/sec) 

rω&          Rotor (angular) acceleration or deceleration  
              (rad/sec2) 
ωsl          Angular velocity of slip (rad/sec) 

 
 

1   Introduction 
The recent development of an adaptive sliding-mode 
speed observer [1] provides a practical observer that 
is stable in the Lyapunov sense under almost 
constant speed of motor revolution. During transient 
state, the rotor acceleration ( )rω&  is not zero, and 
stability has not yet been guaranteed. The observer is 
thus suitable for steady-state operation such as paper 
mill, rubber extrusion, etc. This limitation could be 
overcome if the observer stability in transient state 
were guaranteed. Without this limit, the application 
of the observer for servo control would be possible. 
     This article investigates transient stability of the 
adaptive sliding-mode observer via LaSalle’s 
Theorem. Firstly, description of selecting a 
Lyapunov function for the PI adaptive laws is 
imparted. Secondly, detailed investigations and  
discussions on transient stability of the observer via 
an invariant set are presented. Thirdly, simulation 
results are presented to verify the claim. 
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2   Lyapunov Function for PI Adaptive 
Laws 
In the earlier work [1], an improvement of parameter 
estimations inside the adaptive sliding-mode speed 
observer was accomplished by four proportional plus 
integral (PI) adaptive laws instead of its solitary 
integral elements. In order to ensure its stability, a 
Lyapunov function candidate will be chosen and 
examined. Our speed observer for a three phase 
induction motor (IM) taking core-loss into account is 
written as follows: 

 
( ) orsrss UˆD̂vBˆÂîÂdtîd             111211 +ψ++ψ+= ,         (1) 

 
( ) rrsr ˆD̂ˆÂîÂdtˆd ψ+ψ+=ψ 22221         ,                         (2) 

 
where the meaning of each term is given in 
Appendix. Four PI adaptive laws running parallel to 
the observer concurrently estimate stator, rotor, and 
core-loss resistances and rotor angular speed of the 
induction motor. These PI laws are denoted 
compactly as 

 

SsiSsps kkR̂ Θ−Θ−=       && ,                                           (3) 
 

RriRrpr kkR̂ Θ+Θ=       && ,                                             (4) 
 

mmimmpm kkR̂ Θ−Θ−=       && ,                                        (5) 
 

ωωωω Θ−Θ−=ω ipr kkˆ       && ,                                         (6) 
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and whole PI gains must be only positive values (ksp, 
krp, kmp, kωp > 0 and ksi, kri, kmi, kωi > 0). When an 
integral type of four adaptive mechanisms is 
replaced by the PI portion, an enhanced Lyapunov 
function is selected and written in 
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     For simplifying the derivative of this Lyapunov 
function, a product [1] between the transpose of the 
surface vector and the derivative of the same with 
respect to time is expressed as 
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     Subsequently, differentiating the Lyapunov 
function along time brings forth 
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     By substituting the product in Eq. (8) and four 
adaptive laws in Eqs. (3) to (6) into Eq. (9), and 
assuming that Rs, Rr, Rm and ωr are almost constant  
in comparison with system dynamic of state 
variables, then V& is truncated into a shorter form as 
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where ( ) ( ){ } 0              11211 ≤−+++ ψ oi

T
i UeDAeKAS . Eq. 

(7) and Eq. (10) signify that if an induction motor 
connected in alignment with its load rotates at a 
constant shaft speed, the speed observer always and 
usually remains stable because V& is negative 
semidefinite. During transient state, the rotor angular 
acceleration or deceleration ( )rω&  is not zero, the 
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observer may or may not be stable in the Lyapunov 
sense because V& may be positive or negative. 
     The next section investigates the observer 
stability during transient state. 

 
 

3   Investigation Regarding Stability 
during Transient State 
Whenever the rate of change of the rotor speed 
varies, system mechanical dynamic will influence 
V&. This yields 
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, and the rotor speed is expressed by 
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where  ieq  =  isβψrα − isαψrβ and ( )( )rT LMpK 43  = . 
As an outcome, the Lyapunov function in Eq. (7) and 
its derivative in Eq. (11) become scalar functions. By 
superseding Eq. (12) into Eq. (11), one could obtain 
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Eq. (13) prescribes that, in addition to Eq. (10), 
whereas the rotor speed is changing, the estimated 
rotor speed ( )rω̂ , rω& , the mechanical parameters of 
the system, and the difference between 
electromagnetic torque (Te = KTieq) and load torque 
(TL) affect stability of the speed observer through the 
function V&. Then, in order to elucidate the condition 
for transient stability, Eq. (13) is rearranged as an 
inequality 
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where rω&  is a variable which must be further 
resolved to its solutions. Subsequently, Ineq. (14) is 
rewritten as 
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observer is stable. However, if 
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becomes positive. In addition, the solutions rω&  must 
be real. Then, the observer becomes unstable. Hence, 
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 stand for the upper  

bound and the lower bound of rω& , respectively. The 
term ( )tE J2Ω  means a mid-point quantity between 
the upper and the lower bounds. While an induction 
motor with its load starts rotating from standstill or 
changing speed due to disturbances, the discriminant, 
the upper bound, the lower bound, and the mid-point 
quantity of rω&  are also varying along the 
instantaneously rω̂ , the mechanical dynamic, and 
Eq. (10). Therefore, the speed observer may be either 
stable or unstable, depending upon the location of 

rω&  whether it is contained within the bounds. When 
time elapses adequately and the motor-load system 
rotates with rω&  decreasing successively till being 
less than a trivial level, the discriminant becomes 
smaller and commences to be negative. Regarding 
this, the distance between the upper and the lower 
bounds will become narrower, and then the two 
bounds meet together at a point in time before they 
vanish. So, if rω&  is further lower toward zero (i.e. 
the rotor speed tends to be constant.), V& becomes 
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continuously merely negative. Hence, the speed 
observer becomes stable because 
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Ineq.(16), Ineq.(15) in arrangement of completing 
the square, is true. Whereas the observer enters 
steady state, V& decays to zero. 

 
 

4   Explanation Concerning Stability 
via an Invariant Set 
In order to assert stability of the speed observer since 
prior ending of transient state up to complete steady 
state, a short review of the invariance principle 
attributed to LaSalle [2] is given. Consider an 
autonomous system 

 
( )xfx ρ&ρ     = ,                                                           (17) 

 
where xρ  is a state variable vector. Theorem: Let V 
be a positive scalar function with its continuous first 
derivative for the system in Eq. (17). Let ΞC be the 
region or set containing all members of xρ  such that 

0    ≤V& . Let ΞO be the region or set whose members 
are all xρ  satisfying the condition that 0    =V&  only. 
Moreover, let ΞI be the largest invariant region or set 
within ΞO. Owing to ΞI ⊂ ΞO ⊂ ΞC, then, every 
trajectory of xρ  originating in ΞC approaches ΞI as 
time passes sufficiently long where V must be a 
Lyapunov function candidate. 
     According to the theorem, two error equations [1] 
between the motor-load system and the speed 
observer, dealing with obtaining three sets of ΞC, ΞO, 
and ΞI, can be expressed as 
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( ) ( ) rsi ˆDAîAeDAeAe ψ∆+∆+∆+++= ψψ 2222122221               &   
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     Under the situation of 0    ≠ωr& , the discriminant 
and V& become negative simultaneously. Besides, the 
discriminant must be further negative successively. 
Thereafter, when the rotor speed reaches steady 
state, V& is normally negative semidefinite. By this 
reason, a set of ΞC is given as 
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where ℜ2 is a set of column vector with any two real 
numbers. From Eq.(7) and Eq. (10), while rω&  
becomes equal to zero, V is a decreasing function of t 
(i.e. V(t) ≤ V(0)). When time goes by adequately long 
(t → ∞), Si → 0 , ei → 0 , ΘS → 0 , ΘR → 0 , Θm → 0 
, and Θω → 0  as well as ∆Rs , ∆Rr , ∆Rm , and ∆ωr 
converge to their corresponding constant values in 
steady state. Thus, a set of ΞI is written as 
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     Through Ineq. (16), at the instance of 0    ≠ωr& , 
when the discriminant declines to zero, rω&  equals a 
mid-point quantity as well as V& equals zero 
momentarily. In other events, V& tends to zero in 
steady state. Thereby, a set of ΞO is given as 
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     Caused by ΞI ⊂ ΞO ⊂ ΞC, ei, eψ ∈ ΞC move onto 
ei, eψ ∈ ΞI as t → ∞. 

 
 

5   Simulation Results 
Simulations are carried out to verify stability of the 
speed observer during transient state. According to 
direct-on-line starting, at the initial instant of time (t 
= 0) the motor previously de-energized at standstill is 
connected directly to a 220 V, 50 Hz  three-phase ac 
sinusoidal supply [1]. An actual load torque is 
supposed to be constant. The speed observer receives 
measurable stator voltages and currents in order to 
on-line update stator, rotor, and core-loss resistances 
as well as estimate rotor angular speed and flux 
linkage of the induction motor. The resultant 
discriminant, the upper bound and the lower bound 
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of rω& , and the mid-point quantity between two these 
bounds are revealed in Fig. 1 while the derivative of 
V (V&) in Eq. (13) is shown in Fig. 2. Because rω&  
cannot be a complex number, the square root of the 
absolute value of the discriminant is computed in 
lieu of the square root of the discriminant. Thus, 
whenever this discriminant becomes negative 
continuously, rω&  is without the two above bounds 
being meaningless, for example, since the point ‘K’ 
of time in Fig. 1. 
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Fig. 1  The discriminant, the upper bound and the 
lower bound of rω& , and the mid-point quantity 
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Fig. 2  V& during transient state 
 

     When the motor speed ωr increases or decreases, 
V&can be positive or negative. During transient state, 
V& and V may oscillate. As time goes by, the 
oscillation of rω&  dies down and decreases 
continually. V& shows a similar pattern, and finally 

0    ≤V& , for example, since the point ‘K’ of time in 
Fig. 2. 

 

6   Conclusion 
This article has shown that when the motor speed 
changes due to set-point change or load disturbance, 
the adaptive sliding-mode speed observer becomes 
unstable for a short moment before regaining 
stability. In practice, this unstable period can be 
shorten by increasing the gains of the PI adaptive 
laws such that the differences between motor 
dynamic and observer dynamic are decreased. 
However, care must be taken that high gains do not 
amplify chattering, noise, and harmonic so that speed 
estimation is ever increased. To obtain optimum 
gains is still an open question. Previous studies 
[1][3] have shown that the observer is always stable 
with positive PI-gains under steady state motor 
operation. 

 
 

Appendix : Meaning of Each Term in 
the Speed Observer 
The symbol ‘^’ indicates the estimated values or 
vectors. The meaning of the symbols used is clarified 
in the Nomenclature, and the matrices of the speed 
observer are as follows: 
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     Uo is the correction vector laid to compel the 
estimation error to zero [1]. Let the mismatches 
between the estimated and the actual vectors as well 
as between the estimated and the actual parameters 
be 
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