
A Novel Metric of Software Quality: Structural Availability

SHUBIN CAI1, SHIXIAN LI1, ZHONG MING2, SISHAN GU1 and XINHONG ZENG2

1 Computer Science Department, SUN Yat-sen University, 510275, Guangzhou, China

2 Information Engineering Faculty, Shenzhen University, Shenzhen, 518060, China

Abstract: Most present researches of software quality separate software availability from hardware availability
thoroughly. However, software availability is defined as the probability that software is operating according to
requirements at a given point in time. Hardware error, fault or failure surely has negative impact on software
operation and decreases software availability. Applications are running on Operation System and/or some
platforms, which are called runtime environment. Users tend to consider unrepeatable and unobvious hardware
or environmental errors as application errors. Therefore, such factors should be considered in software
availability. Abstract machine is a theoretical foundation for software programming. An Abstract Machine with
Hardware Reliability (AM-HR) and an Abstract Machine with Environment Reliability (AM-ER) is proposed in
this paper. Based on AM-ER, A novel metric named structural availability of software is presented. Utility of
this metric in Change Management is shown to exhibit the promising prospect of structural availability.

Key-Words: Software Quality, Metric, Software Availability

1 Introduction
Today, great reliance is placed on software products,
to the point where software has assumed a critical and
strategic role in organizations’ business[1]. Though
software industry hasn’t completely overcome the
“software crisis”, now it is facing a bigger challenge.
That is to develop more complicated software
products within the constraints of time and resources
and without the sacrifice of quality.

Although people have been discussing software
quality for decades, software quality research is still
relatively immature, and it is difficult for a user to
compare software quality across products [1, 2].
Stakeholders with different job roles are found to
focus on different sets of software characteristics. It
has been said that there are as many definitions of
quality as writers on the subject [3]. We summarized
such views as below: 1.) the product-based view,
such as testing results or mathematical proofs based
on formal specification; 2.) the manufacturing/
process-based view, which focus on Quality
Assurance or Quality Management in a software
process; 3.) the user-based view, which often have
surveys for customer satisfaction; 4.) the project view,
such as the earned-value approach in [4].

In spite of such different aspects, software quality
has come to some consensus. The most widely used
models of software quality are McCall Model,
Boehm Model and ISO/IEC 9126 Model. These
models classify software quality into (factors)
characteristics, criteria and metrics, which are

hierarchical models. Metrics are measured to indicate
characteristics of software quality. In fact, most of
the metrics are measured by experts’ qualitative
evaluation. Only a few quantitative metrics are
measured from testing, which can be regarded as in a
more engineering way.

In this paper, we proposed a novel metric of
software quality named structural availability. This
metric is measured quantitatively, thus it can be
compared between software. The paper is organized
as follow. Section 2 is an overview of the related
work. In section 3, we extended a popular Abstract
Machine with hardware and environment reliability.
In section 4, we proposed the definition of structural
availability from structural analysis of software. In
section 5, we exhibit the utility of structural
availability in change management. Then we come to
a conclusion in section 6.
2 Related Work
Boehm classified software quality of an organization
into 3 levels [5]. In Consciousness level I, we deliver
software according to documented requirement
specification. In level II, customers’ satisfaction
plays a central role in software quality. In level III, all
the systems’ success-critical stakeholders’ concerns
are negotiated and mutually satisfactory or win-win
set of quality factors are achieved. Currently, most
organizations are in level II. Many researches in the
field still focus on customers’ satisfaction. However,
we provide some guidelines for negotiation with
customers in Change Management to complete a

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

mailto:Caishubin@vip.sina.com
mailto:lnslsx@mail.sysu.edu.cn
mailto:zsugss@163.com
mailto:Mingz@szu.edu.cn

win-win goal in this paper, which is an attempt to
Level III.

The Earned-value approach [4] is a new and
effective quantitative measurable metric of economic
factor of software. A project is broken down into
several tasks and each task is associated with budgets,
schedules and earned-value. As project proceeding,
Budgeted Cost of Work Scheduled (BCWS),
Budgeted Cost of Work Performed (BCWP) and
actual Cost are reviewed. If BCWP is significantly
less than BCWS or actual Cost, or both, the project is
overrunning its schedule, budget or both, and
corrective action must be performed. This
valued-base approach is very useful for economic of
software quality, while the structural availability is a
metric of reliability of software. Both these metrics
complete the metrics for software quality.

Nassib[6] summarized software reliability
measurement researches, which extrapolate the
mathematics of hardware reliability theory to the
prediction of software reliability. Simple measures of
MTBF (Mean Time Between Failure), MTTF (Mean
Time To Failure), MTTR (Mean Time To Repair)
and Availability are used, where

MTTRMTTFMTBF += , and

%100×
+

=
MTTRMTTF

MTTFtyAvailabili

Such metrics are overall and run-time
measurement of software quality. Prediction models
are proposed to calculate availability based on LOC
(line of codes), default found in testing and historical
records of the organization. These metrics have less
utility on analyzing, designing and implementing
phases of a software application. While using
sensitivity analysis, structural availability can be
used to improve the designing and implementing
phases of the software.

Bernad Wong tried to find out which metrics are
appropriate as a measure for each characteristic
(usability, functionality, operational, technical,
institutional, service and economic) of software
based on value-chain models [3]. His survey showed
that Values (sense of belonging, excitement etc) and
Consequences (be more efficient, less stressed, meets
expectations etc) metrics are appropriate for the
measurement. Since usability is much broader than
availability, availability isn’t examined in detail here.
Chulani et al [7] tries to find out metrics having the
most significant impact on customer satisfaction
based on CUPRIMDSO (Capability, Ease of use,
Performance, Reliability, ease of Installation,
Maintainability, Documentation, Service/Support,
Overall satisfaction of the product) Model. As the
number of PMR (Problem Management Report) or

Critical Situations (a critical problem report)
received increases, customer satisfaction with
Reliability tends to decrease. Though structural
availability is proposed and regarded as a metric of
software reliability, surveys like these researches
may be helpful to confirm our intuition, which will be
carried out in our further research.

In order to improve the objectivity of software
quality evaluation, Li [8] proposed a practicable
software evaluation process model based on some
quantitatively measured metrics of software quality,
for example, Default Density. The structural metric
can be serves as another objective metric for software
quality evaluation in their evaluation process model.

In [9] a software quality management model and
platform based on CMM is proposed to help software
organization achieve the high level maturity. Our
new metric can also be used as a metric for evaluating
in their model.

Almost every researcher in software quality area
agrees that quality should be viewed objectively and
unmeasured quality is just talk. Measurements are
essential to improving existing processes and
methodologies over time, and gauging future
software projects. But by now, only a few metrics of
software quality can be measured objectively. The
Structural Availability is a novel metric that can be
measured objectively. We believe that it will enhance
the software quality measurement research and
application.
3 Extended Abstract Machine

If we consider a computer-based system, simple
measures of software reliability are MTBF, MTTF,
MTTR and Availability. Although software quality is
thought to be irrelevant to hardware quality, it may
not that irrelevant when software availability and
customer satisfaction is concerned.

Availability measure is defined as the probability
that software is operating according to requirements
at a given point in time. Hardware error, fault or
failure surely has negative impact on software
operation and decreases software availability. Further
more, application users tend to consider unrepeatable
and unobvious hardware or environmental errors as
application errors, and lower down their satisfaction
with software.

For example, have you ever rebooted computer
to “fix” “software problems”?

If errors are unrepeatable, how sure can you say
that it is a software problem? One may argue that the
problem is related to unrepeatable and unpredictable
run-time environment. But, have you ever rebooted
computer to fix operation system start-up problem?
In this case, less environmental factors are involved.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

Or, more usually, have you ever refreshed a web page
to fix a display problem? We are aware of hardware
failures and faults, but we are used to ignoring
hardware errors. Take Network devices for example,
physical circuit never promises a high reliability. The
reliability is achieved by error control of upper
network devices or software such as hardware
implementing Data Link Layer protocol or software
implementing Transport Layer protocol. Though high
reliability is declared by TCP, almost everyone has
encountered transport error, such as downloading an
incomplete file. Hardware errors are commonly
encountered in our daily life using network-based
applications. Updating online is a trend of software
update management. The bigger the size of updating
files and the larger the amount of users, the more
probability of downloading error-embedded software
occurred. Therefore, hardware and environmental
factors should be considered in software availability.

On the contrary, we should note that hardware and
environmental factors should not be considered in
correctness of software quality, which is an important
achievement of software quality in the early 1960,
70s. The underlying assumption of this paper is that
software is or is to be developed correctly.

Abstract machine is a theoretical foundation for
software programming. An Abstract Machine with
Hardware Reliability (AM-HR) and an Abstract
Machine with Environment Reliability (AM-ER) is
extended from a traditional Abstract Machine.

Definition 1. Abstract Machine AM = (C, E, S,
⇒), where C is the sequence of instructions (or code)
to be executed, E is the evaluation stack containing
intermediate values during execution and S is the
storage storing the values of variable in the
instructions. AM has configurations of the form <c, e,
s>∈Conf ⊆ C×E×S and transition relation (execution)
⇒ ⊆ Conf×Conf.

Since AM is a basic notion in computer science
field, the further explanation is omitted here. Syntax
of instructions is of less relevance to our goal, also is
omitted. Then we extended the AM to an Abstract
Machine with Hardware Reliability, namely AM-HR.

CPU, Memory, Hard disk, Main board (I/O Bus)
and other devices constitute a typical personal
computer. These devices have much higher
availability than Network devices. In particularly,
web-based applications’ availability should be
concerned with hardware reliability.

Let H denote the set of hardware devices in
interest, and 2(H) denote the power set of H. Each
hardware device h∈H has an availability denoted as
A(h), which can be accessed from hardware vendor.
Each element hs∈2(H) has an availability, denoted as

A(hs), which is calculated from

∏
∈

=
hsh

i
i

hAhsA)()((1)

Definition 2. AM-HR = (C, E, S, H, ⇒HR), where
H is hardware involved in executing instructions, and
C, E, S have the same meaning in AM. AM-HR has
configurations of the form <c, e, s, hs>∈Conf-H ⊆
C×E×S×2(H) and transition relation ⇒HR ⊆ Conf-H
×Conf-H ∪ {undefined}. If <c, e, s>⇒<c', e', s'> in
AM, then <c, e, s, hs>⇒HR<c', e', s', hs'> with
probability of A(hs), and <c, e, s, hs> ⇒HR undefined
with probability of 1 − A(hs).

Though we don’t assign a specific syntax of
instructions of AM or AM-HR in this paper, hs can be
recognized from analyzing each instruction in the
syntax, and A(hs) can be calculated from formula (1).

The transition relation ⇒ HR becomes a
probability relation in AM-HR. That means, only if
the relevant hardware devices work properly, the
transition can be done correctly as expected,
otherwise transition will lead to an undefined value.

Traditionally, for an instruction sequence, we
either have its finite computation sequence of
transition to a terminal configuration where c=ε or
have an infinite computation sequence named
looping. Now, in AM-HR, we may have a finite
computation sequence of transition ends with
“undefined”, we call it an error configuration.
Computation or software becomes unavailable when
error configuration encountered.

Definition 3.
 If , the

availability of computation sequence of c
><>⇒< nnnnHR hssechssec ,,,,,, *

1111

1 to cn is

denoted as . ∏
=

=⇒
n

i
inHR hsAccA

1

*
1)()(

Theorem 1. Looping computation sequence has
availability = 0.)(* εHRcA ⇒

Proof: Firstly, each hardware device’s availability
A(h) <1.

Secondly, as shown in formula (1), each set of
hardware devices hs has availability A(hs) calculated
from A(h) , thus A(hs)<1.

Finally, a instruction sequence c causing looping
computation sequence has availability

, where each A(hs∏=⇒
∞

=1
)(

*)(
i

ihsAHRcA ε i) <1, then

=0. �)(* εHRcA ⇒
This is an interesting result. Firstly, AM theory

suppose we only care about execution result. If
machine never halts, the useful result can’t be got at
any time. The computation sequence means nothing
to us and obviously, its availability equals 0.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

However, when software, such as Operation System
or daemon programs is concerned, the AM
assumption may not hold. The computation sequence
is useful or available when it can react to our request,
but not when it terminates. Thus, we can’t take the
availability as the practical
measurement of an application. A “functional check
point” is introduced in section 4 to solve this
problem.

)(* εHRcA ⇒

When developing an application, usually we don’t
interact with hardware directly, but OS and other
environmental services. AM-HR isn’t powerful
enough to manage this situation. We extended it to an
AM-ER to deal with environmental factors.

What are environmental factors? We’d like to
indicate that environment is defined according to
application domain, i.e. environment can’t be
identified by AM itself. Environmental factors are
imported from outside specification and granularity
that we have interested in. Besides hardware factors,
environmental factors can be recognized from among
“call” instruction in AM. If a procedure call reference
to a procedure in interest, it is not counted as
environmental factor. Otherwise it could be counted
as environmental factor, such as system invocation.
For example, a socket-based application, when
calling a read method of a socket, the following
computation sequence in AM till “return” instruction
of that “call” is marked as environmental factors. And
we called such computation sequence as
environmental computation sequence.

In AM-ER, the environmental computation
sequence in AM-HR is compressed in a big step of
configuration transition.

Definition 4. AM-ER = (C, E, S, Env, ⇒ ER),
where Env is the environment involved in executing
instructions, and C, E, S have the same meaning in
AM. AM-ER has configurations of the form <c, e, s,
env>∈Conf-Env ⊆ C×E×S×Env and transition
relation ⇒ ER ⊆ Conf-Env ×Conf-Env ∪
{undefined}.

1.) If <c, e, s, hs>⇒HR<c', e', s', hs'> in AM-HR
and isn’t marked as environmental factors, then
env=hs, env'=hs' and <c, e, s, env>⇒ER<c', e', s',
env'> with probability of A(env), and <c, e, s, env>
⇒ER undefined with probability of 1 − A(env).

2.) If <c, e, s, hs>⇒HR<c1, e1, s1, hs1>⇒HR
…⇒HR<cn, en, sn, hsn>⇒HR<c', e', s', hs'> and <c1, e1,
s1, hs1>⇒HR …⇒HR<cn, en, sn, hsn> is marked as
environmental factors, then <c, e, s, env>⇒ER<c', e',
s', env'> with probability of A(env), and <c, e, s, env>
⇒ER undefined with probability of 1 − A(env) where
env'=hs', env= and

A(env)= .

}),(,{ *
1 nnHR hscchs ⇒

)()()(*
1 nnHR hsAccAhsA ×⇒×

In practical, it is very difficult to calculate the
value of , since environmental factors
are out of our control. We suggest assigning a symbol
for every distinct system invocation at first. Then we
can do some sensitive analysis after the overall
availability formula is gained, and find out critical
environmental factors, to improve the software
quality.

)(*
1 nHR ccA ⇒

Definition 5.
If , the

availability of computation sequence of c
><>⇒< nnnnER envsecenvsec ,,,,,, *

1111

1 to cn is

denoted as . ∏
=

=⇒
n

i
inER envAccA

1

*
1)()(

4 Structural Analysis
In practical, many useful applications don’t fulfill

the AM result-on-termination assumption. We
introduced a functional check point to solve it.

When Functional Check Points (FCP) is met, the
machine has just generated useful output for user.
FCPs are among I/O function points specified in
requirement specification. For example, in a method
printOrder of a class SaleOrder, FCP is the set of
“return” codes in the method, since printing a sale
order is a meaningful output for users, and the body
of printOrder has completed this function.

When doing structural analysis for structural
availability, we should do as follow:
1. Identify the boundary between environment E and

software S in interest
2. Calculate or estimate (structural) availability of

relevant environmental factors , where
env

)(ienvA
i∈E. We suggest using symbols at first.

3. Identify functional check points and estimate the
operation frequency of each functional check
point Fcpi∈S, denoted as λS(Fcpi), satisfying

1)(=∑
∈SFcp

is
i

Fcpλ .

4. For each functional check point Fcpi, find out
reachable computation sequence Cj from the
starting configuration of the software to the
configuration with functional check point in
current instruction, i.e. find out code paths to Fcpi.
The paths consist a set denoted as Path(Fcpi), then
estimate or calculate the average operation
frequency of each Cj∈Path(Fcpi), denoted as

)(jFcp C
i

λ , satisfying 1)(
)(

=∑
∈ ij

i
FcpPathC

jFcp Cλ

5. For each computation sequence Cj, calucate the
availability of it by

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

∏
=

=⇒=
n

i
ijnERjj envAccACA

1

*
1)()()(

6. Calculate the availability of each functional check
point Fcpi

∑ ×=)()()(jFcpji CCAFcpA
i

λ
7. The overall availability of software S is called the

structural availability of S,

∑ ∑

∑

∈ ∈

∈

××=

×==

SFcp
iS

FcpPathC
jFcpj

SFcp
iSi

i ij

i

i

FcpCCA

FcpFcpASASSA

)()()(

)()()()(

)(
λλ

λ

(2)

 Fig. 1. A diagram of SaleOrder, Customer and Item
We will illustrate how to calculate the structural

availability using the class diagram. Figure 1 is a very
simple example of a sales application.

printOrder prints the names of customer and
items using the getName methods in their
corresponding classes and a print function provided
by system, which is reconginzed from the sequence
diagram. Item is deployed as a local Class while
Customer is a remote class from deploy diagram. The
Network-relevant devices has availability of al, while
Network-irrelevant devices has availability of ah.
Print is a system invocation has availability am.
printOrder completes a meaningful function to users
and the return instruction in which is regarded as a
functional check point. From the entrance point to the
exit point, there exist many different computation
sequences, though only an instruction sequence is
written. For example, the getName method of class
Item may be called 1, 2, 3 or more times in different
computation sequences C1, C2 or C3. These
computation sequences have different frequency,
denoted as)(),(2int1int CC OrderprOrderpr λλ and

)(3int COrderprλ etc. The availability of these
computation sequences is calculated as

amalahCAamalahCA ××=××= 2
21)(,)(

and respectively. amalahCA ××= 3
3)(

And the overall structural availability is
. ∑ ×=)()()(int iOrderpri CCASaleOrderSA λ

From the above formula, we can see that the more
Items the Order contained in actural need, the more
critial the Item class is in the sucessful operation of
this system comparing with other components. Thus
more attention should be paid to it. Changes made to
it should be checked with more cautions.

From other sensitivity analysis of SA(SaleOrder)
we can learn more about the quality of our system and
prove the design of class diagram, sequence diagram
and deploy diagram.

We have only one FCP in the above case. If
getPrice in SaleOrder also writes the result on the
screen, it can be regarded as a FCP. We suppose user
use getPrice 9 times than printOrder in using the
application, which means λSaleOrder(printOrder)=0.1
and λSaleOrder(getPrice)=0.9. Then the structural
availability of this application is 0.1×A(printOrder)
+0.9×A(getPrice), where A(printOrder) and
A(getPrice) can be calculated similar to the first case.
And similar sensitivity analysis could also be done to
find out critical components in this system.

We havn’t investigated software fault tolerance
and recovery mechanisms in detail here.but showing
a simple example. Suppose p1, p2 are two compoents
having similar function, if one works correctly, then p
can generate meaningful result to users with
coordinating component p3. Then SA(p)＝SA(p3)×[1
－ (1－ SA(p1))(1－ SA(p2))] ＝ SA(p3)× [SA(p1)＋
SA(p2)－SA(p1)SA(p2)]
5 Structural Availability in Change
Management
Today, we all admit that software requirement will
continue changing. A well-functioning Configuration
and Change management (CCM) is a major part of
software quality assurance and becomes more critical
for software success. But [10] showed that CCM is
only supported in RUP (Rational Unified Process) ,
while it is ignored in MSF (Microsoft Solution
Framework) and XP (eXtreme Programming).
However, RUP still fail to answer a vital problem that
which changes should be accepted and which
should not. In private interviews with software
project managers, they all admit that inexperienced
engineers tend to accept all kinds of changes
customers required without careful consideration and
often make mistakes. The professional knowledge
these engineers have ensure them to implement the
system after all. But these mistakes usually lead to
software project’s exceeding of time and budget.
Standish[11] carried out a famous long term
investigation of software project named Chaos. The
challenge project (time-exceeded or budget-exceeded)
in chaos is 53% in 2004, much higher than 33% in
1996. While succeed rate is 29% in 2004 and 27% in
1996. Software industry cries for methods to handle
this problem.

We tried to propose some guidelines to deal with
this problem here. The assumption we have here is
that users view product quality (maybe not always
consciously) as the trade-off among reliability (or

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

availability), time of delivery, and cost that best
meets their needs. Thus, reasonable changes are
classified into 3 categories according to their impact
on Structural Avaiability.
1. Changes relevant to code sequences (functions,

classes or modules) which have greater
contribution to structural availability. We need
more time to test and verify the changes in order to
ensure high software availability. In a word, we
don’t encourage these changes. We should be
cautious to accept such changes.

2. Changes will significantly change the code
sequences’ percentage order by contribution to
structural availability, especially the greater ones.
Though such changes are reasonable, we should
not welcome it. These changes are out of our
initial design purpose of this software. Since the
center of the software shifted, our initial
development plan may become nothing. We are
more likely to fail in delivery the software in time
and budget, if we accept these changes but without
reconsideration and re-plan to time and budget. In
a word, we are unwilling to accept this kind of
changes. We should inform customers the big
risks of accepting such changes.

3. Other changes. This kind of changes has less
impact on structural availability. We may
welcome these changes.
Project manager may negotiate with customers

using suggestions guidelines stated above, in order to
achieve a win-win goal of the project.
6 Conclusion
Abstract machine is a theoretical foundation for
software programming. An Abstract Machine with
Hardware Reliability (AM-HR) and an Abstract
Machine with Environment Reliability (AM-ER) is
extended from a traditional Abstract Machine. The
AM-HR, AM-ER proposed in this paper bridge
hardware, environment factors into account for
software availability. This is a novel approach of
availability research. The separation of hardware
availability and software correctness in 1970s is a
great step in software quality researches. But when
software availability is concerned, hardware
availability should be taken into consideration.

Based on AM-ER, A novel metric named
structural availability of software is proposed.
Change Management becomes more and more
important in today’s software developing. The
problem “which changes should we accepte” for
project manager is very hard to answer. Some
suggestions to accept or reject a change are outlined.
We believe that these guidelines will encourage a
promotion in software project success rate.

7 Acknowledge
This research is supported by National Social Science
Foundation of China (#05CTQ001), Guangdong
Natural Science Foundation (#04011304), and
Shenzhen Science Technology Plan (#200422).
References:
1. Bernard Wong, Sunita Chulani, June Verner and

Barry Boehm: Second Workshop on Software
Quality. International Conference on Software
Engineering, Proc. of the 26th Inter. Conf. on
Software Engineering. (2004) 780-782

2. Bernard Wong, June Verner, Sunita Chulani and
Barry Boehm: Third Workshop on Software
Quality. International Conference on Software
Engineering, Proc. of the 27th Inter. Conf. on
Software Engineering, (2005) 688-689

3 Bernad Wong: The Software Evaluation
Framework ‘SEF’ Extended, Information and
Software Technology, (2004) Vol 46, 1037-1047.

4. Barry Boehm, Li Guo Huang: Value-Based
Software Engineering: A Case Study. Computer,
(2003) Vol.36, 33-41.

5. Nancy Eickelmann, Jane Huffman Hayes, (eds.):
New Year’s Resolutions for Software Quality.
IEEE Software, (2004) Vol. 21, 12-13.

6. Nasib S. Gill: Factors Affecting Effective
Software Quality Mamagement Revisted. ACM
SIGSOFT Software Engineering Notes, (2005)
Vol. 30. 1-4.

7. S.Chulani, B.Ray, P.Santhannam, R. Leszkowicz:
Metrics for Managing Customer View of Software
Quality, Ninth International Software Metrics
Symposium (METRICS'03), IEEE, (2003),
189-199

8. LIHu, SHI Xiaohua, YANG Haiyan, GAO
Zhongyi: Software Quality Evaluating Technique.
Journal of Computer Research and Development.
(2002) Vol. 39, No. 1, 61-67

9. Li Mingshu, WANG Qing: Software Quality
Management Based Process Control. ACTA
ELECTRONICA SINICA. Vol.30, No.12A,
2032-2035

10. Wolfgang Zuser, Stefan Heil, Thomas Grechenig:
Software Quality Development and Assurance in
RUP, MSF and XP – A Comparative Study. In:
International Conference on Software
Engineering Proceedings of the third workshop
on Software quality. ACM, New York (2005) 1-6.

11. Chaos, Standish.
http://www.standishgroup.com/chaos_resources/i
ndex.php

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp931-936)

