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Abstract: Consider the Navier-Stokes fluid filling the whole 3-dimensional space exterior to a rotating obstacle
with constant angular velocity �. By using a coordinate system attached to the obstacle, the problem is reduced
to an equivalent one in a fixed exterior domain. It is proved that the reduced problem possesses a unique global
solution which goes to a stationary flow as ��� when � and the initial disturbance are small in a sense.
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1 Introduction
Let us consider the motion of a viscous fluid filling
an infinite space exterior to a rigid body, that moves
in a prescribed way such as rotation and translation.
In order to understand the rotation effect mathemati-
cally, this paper studies the purely rotating case. Thus,
suppose that the body is rotating about ��-axis with
constant angular velocity � � ��� �� ��� � � � �; here
and hereafter, all vectors are column ones. Let � be
an exterior domain in �� with smooth boundary ��.
Unless the body is axisymmetric, the domain occu-
pied by the fluid varies with time �, and it is described
as

���� � �� � �������� � ���

where

���� �

�
� ��� � � �	
 � �

�	
 � ��� � �
� � �

�
� �

We consider the Navier-Stokes equation

����� �� � ���� � 
�������	�
div��� � ��

for � � ����� � 
 �, subject to the boundary and initial
conditions

��	����� � � 
 �� ��� � as 	�	 � ��

����� �� � ������

where ����� �� � ����� ���� ����� and �	��� �� are respec-
tively unknown velocity and pressure of the fluid; ��
is the given initial velocity; �
� � ������ ��� ��

� is
the velocity of the rotating body so that the boundary
condition is the usual nonslip one. A reasonable way
from both mathematical and physical points of view is
to take the frame � � ������ � attached to the body
([2], [8], [15]). The following change of functions is
thus made:

���� �� � ������ ����� ��� 	��� �� � �	��� ���
The problem is then reduced to

���� � � �� � 
�������	�

div � � ��
(1)

in the fixed domain �
 ����� subject to

�	�� � � 
 �� �� � as 	�	 � �� (2)

���� �� � ������ (3)

where

�� � ��� 
 �� � �� �
� � � ��� �� ��� � (4)
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We prove that the problem (1) with (2), (3) pos-
sesses a unique global solution ���� which goes to a
stationary flow �� as ��� when � and �� � �� are
small in a sense. Thus the first step is to find a solution
�� of the stationary problem

�
�� ����� ��	� � �� � ��� � ��

div �� � ��

in � subject to

��	�� � � 
 �� �� � � as 	�	 � ��

Look at the linear part of the first equation of (1).
The crucial drift operator ��
���� has a variable co-
efficient growing at infinity and causes the following
difficulties, which indicate that the term �� 
 �� � ��
is never subordinate to the viscous term 
� even if
	�	 is small:

– the semigroup generated by the operator 
 �
�� is not an analytic one in, say, �� ([15], [16]);

– the essential spectrum of the operator 
 ���

in �� consisits of a set of equally spaced half lines
parallel to the negative half real line in the complex
plane ([7]);

– the pointwise estimate of the fundamental so-
lution of the operator 
 ��� is slightly worse than
�
	�� �	 for large ��� �� ([6], [17]).

Up to now, particularly in the last decade, a lot
of efforts have been made on the problems above or
some related ones; see [2], [3], [10], [12], [13], [15]
for the nonstationary flow, [4], [5], [6], [8], [9], [11],
[17], [26] for the stationary one. Among them, the
stationary solutions of [9] and [5] can be taken as the
basic flow around which a global solution exists since
their solutions enjoy so good asymptotic behavior at
infinity that one can expect the stability. In fact, Galdi
[9] derived pointwise estimates

	�����	 � �
	�	� 	������	� 		����	 � �
	�	�

of a unique stationary solution provided that � is small
enough and that, in case the external force � � div �
is present, it has some decay properties and is also
small in a sense. Another outlook on the pointwise
estimates above in a different framework by use of
function spaces has been recently provided by Farwig
and Hishida [5] when the external force � � div �
is taken from a larger class � � ���������, where
������� is the weak-�� space, one of the Lorentz
spaces introduced below. To be more precise, a sta-
tionary solution of class

�� � �������� ����� 	�� � ��������� (5)

has been uniquely constructed for small � and
���	��������, subject to

�����������
� ������ 	������������

� �
�
	�	� ���

���������

�
�

(6)

This result can be ragarded as a generalization of [21]
and [25] to the rotating body problem.

The solvability of the initial value problem (1),
(2), (3) was studied in [2], [10], [13] and [15].
Borchers [2] constructed weak solutions for �� in
�����. As usual, we do not know the unique-
ness of weak solutions. Later on, in [15] the exis-
tence of a unique solution locally in time was proved
when, roughly speaking, �� possesses the regularity
�

���
� ���. This local existence result has been re-

cently extended to the general ��-theory by Geissert,

Heck and Hieber [13] to replace ����
� ��� by �����.

Galdi and Silvestre [10] showed the unique existence
of local and global strong solutions by the Galerkin
method. Their global solution was constructed around
a stationary solution �� of Galdi [9] and the stability of
the solution �� was also proved. To be more precise,
if � is small and if ��� �� is taken from ��

� ��� with
small � �

� -norm, together with ��	�� � � 
 � and
��
����������� � �����, then there is a global so-
lution ���� which satisfies ������� � ����	���� � �
as ���.

Our goal is to prove the stability of the station-
ary solution �� of [5], [9] for small � and �� � �� �
�������. Let ���� 	�� be the stationary solution of
class (5) subject to (6) (with � � � for simplicity).
Set

���� �� � ���� ��� ������

���� �� � 	��� ��� 	�����

and ����� � ������ �����. Then our stability prob-
lem is reduced to the global existence and decay of
solutions to

��� � � � �� � �� � �� � � � ���

� 
� ���� ����

div � � ��

(7)

in �
 ����� subject to

�	�� � �� � � � as 	�	 � �� (8)

���� �� � ������ (9)
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Although the global solution of [10] is more regular
than ours, new contribution of our global existence
theorem is to deduce the definite decay rates of ����,
see (14) below, which seem to be optimal.

2 Main Theorems
To state our main theorems, we introduce some func-
tion spaces. We adopt the same symbols for vector
and scalar function spaces. Let ��� ��� consist of
all ��-functions with compact supports in �. For
� � � � � and � � � � �, we denote by �


� ���,
with � �

� ��� � �����, the usual ��-Sobolev space of
order �. Let � � � � � and � � � � �. Then the
Lorentz spaces are defined by

������� �
�
������ �����

�
�������

�

where ��� �� is the real interpolation functor, see [1]. It
is well known that � is in ������� if and only if

���
�
�

� 	�� � �� 	����	 
 ��	��� ��

and that ������� is the dual space of �������������.
Note that ��� ��� is not dense in �������. We
next introduce some solenoidal function spaces. Let
�������� be the class of all ��� -vector fields � which
satisfy div � � � in �. For � � � � � we de-
note by ����� the completion of �������� in �����.
Then the Helmholtz decomposition of��-vector fields
holds, see Miyakawa [23]:

����� � ������ ��� � ������� � �����������

Let � denote the projection operator from ����� onto
����� associated with the decomposition. Then the
operator 
� is defined by��
	
��
�� � �� � ����� �� �

� �����	�� � ��

�� 
 �� � �� � �������


�� � �� �
�������

see (4). It is proved in [13] that the operator �
�
generates a ��-semigroup ���������� on the space
������ � � � �� (see also [14] for the case � � �).
We need also the solenoidal Lorentz spaces, which are
defined by

������� �
�
������� ������

�
���

where � � �� � � � �� � �� � � � � � and
�
� � �����
����
��. Then ���������� is extended
to the semigroup on the space �������.

In the construction of a global solution to (7), (8),
(9), the essential step is to establish the following ��-
�� estimates of the semigroup �����.

Theorem 1 Suppose that

� � 	 � � �� for � � ��
� � 	 � � � � for � � ��

(10)

and let �� 
 � be arbitrary. Set

 �
�

�

�
�

	
�

�

�

�
�

1. There is a constant � � ��	� �� ��� 
 � such
that

��������������� � �����������
�����

(11)

for all � 
 �� � � ����� and � with 	�	 � 	�	 �
��. For � � � and � � � as well, estimate (11)
holds.

2. Let � � � � �. Then there is a constant � �
��	� �� �� ��� 
 � such that

����������������� � �����������
�������

(12)

for all � 
 �� � � ������� and � with 	�	 �
	�	 � ��.

The restriction � � � for the gradient estimate,
which was first proved by Iwashita [19] for the case
of the usual Stokes semigroup (� � �), is closely
related to the decay structure of stationary solutions.
Since the decay of our fundamental solution is slightly
worse than that of the usual Stokes one as was men-
tioned, it is hopeless to improve the restriction � � �
for � � � in Theorem 1. In fact, Maremonti and
Solonnikov [22] pointed out that one cannot avoid that
restriction for the gradient estimate even when � � �.

By use of the semigroup �����, the problem (7) is
converted into

���� � ������� �


 �

�
����� !��div"���� ��!��#!�

where

"���� ����� � ����� ���� � �� � ���� � ����� ���

In view of the class (5) of the stationary solution ��,
however, it is difficult to treat the additional linear
terms div��� � � � � � ���. We thus consider the
weak formulation
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������ $� ����� �����
�$�

�


 �

�
�"���� ��!��������� !��$�#!�

�$ � ���������

(13)

in terms of the adjoint semigroup ������, that is essen-
tially the same as ����� itself since ������ � ������
for � � �; so, Theorem 1 can be applied. We use
the ����-���� estimates (12) rather than (11). Let
� � 	 � � � � and �
� � �
	 � �
�. Then the
interpolation technique developed by Yamazaki [27]
combined with (12) for � � � implies
 �

�
����������������#� � ����

�������

for � � �������. This enables us to deal with the
additional linear terms in "���� �� as a perturbation
from the semigroup �����. As a result, we obtain the
following global existence theorem.

Theorem 2 Let �� � �������.

1. There is a constant Æ 
 � such that if

	�	� �����������
� Æ�

then the problem (13) possesses a unique global
solution

� � %�
�
�������������

�
with

&�– �	�
���

���� � �� in ��������

2. Let � � � ��. Then there is a constant �Æ��� �
��� Æ� such that if

	�	� �����������
� �Æ����

then the solution ���� obtained above enjoys

������
�����

� '
�
����������

�
(14)

as ��� for every � � ��� ��.

3 Conclusions

We have done rigorous mathematical analysis of the
Navier-Stokes flow in the exterior of a rotating obsta-
cle with constant angular velocity � � ��� �� ��� . The
reduced equation in a reference frame attached to the
obstacle involves the drift operator �� 
 �� � � that
is never subordinate to the usual Stokes operator. A
unique solution exists globally in time around a sta-
tionary flow when � and the initial disturbance are
sufficiently small. Especially, our analysis makes it
possible to deduce some optimal asymptotic rates (14)
as ���. The most difficult step is to show decay es-
timates of the semigroup ����� and the proof of them
is own interesting, see [18]. The strategy based on
some cut-off techniques together with spectral anal-
ysis is traced back to Shibata [24] and is similar to
that of Iwashita [19] and also Kobayashi and Shibata
[20], however, we need several new ideas because the
semigroup ����� is never analytic unlike [19], [20]. In
particular, it is important to derive the behavior of the
resolvent �(� 
��

�� for large ( along the imaginary
axis in the complex plane as well as its regularity for
small (.

Finally, we would like to mention two physical
examples which have relation to our theory. One is
the particle sedimentation in a viscous liquid and the
other is the motion of a viscous fluid around a planet
that rotates on its own axis. The former is particularly
of practical interest and the problem is to find a falling
motion of a rigid body under its own weight in an in-
finite fluid, see Weinberger [28] and Galdi [8] for de-
tails. The body undergoes a rotation and a translation
which are to be determined from equilibrium condi-
tions on the boundary; that is, a fluid-body interaction
system has to be solved. Indeed the present article
is devoted to the fluid motion around a body which
moves in a prescribed way, but our study is certainly
a step toward an analysis of the problem above.
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