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Abstract: - We consider the Oseen problem in exterior domains. We study existence and uniqueness of a solution

in anisotropically weighted Sobolev spaces. We prove existence of a solution and its uniqueness in anisotropically
weighted Sobolev spaces. For the proof of existence we use a localization procedure, see e.g. [KoSo].
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1 Introduction 2 Function spaces, notation

In a three-dimensional exterior domaihin R?, the The pair(O, P) will denote the fundamental solution
classical Oseen problem [Os] describes the velocity of the Oseen problem.

vectoru and the associated pressprby a linearized We introduce the following weight functions to

version of the incompressible Navier-Stokes equations yeflect decay properties of a solution near the infinity:
as a perturbation of . the velocity at infinity;v, is

generally assumed to be constant in a fixed direction, ..y — o (x) = @ (x: 6. 2) = (1 + 67)° (1 + e5)?
say the first axisyo, = |voo|e1. We consider the () = 113 () = mj (x;0,€) = ( ) )
Oseen problem in an exterior domdin

P r:|x\:(:c%+x§+x§)1/2, s=s(x)=r—ux,
—vAu+kdju+Vp=1£f inQ D) xeR3 ¢6>0 a, feR.

divu=g in Q 2 The weights3 belong to the Muckenhoupt class
Ay of weightsinR3if -1 < 8 <1, =3 < a+3 < 3,

u=0ono2 (3 see e.g. [Fal], [KNoPo]. Let us outline our notations:

u—0 as|x|—oc0 (4) We need to denote the special sets
For the case2 = R? the respective problem (1), (2) Bp = {xeR% x| <R},
and (4) was studied e.g. in [Fal] and [KNoPo]. To ex-
tend the estimates derived in these papers the method Bf = I{xeR% x| >R},

of hydrodynamical potentials can be used. The ap-

plication of this method to the Oseen problem without B = Bfo N Bg, QF = QN B, Qr = QN By,
weights is well known. Moreover this method has been ng = O N QFo for positive numbers, < R.
used for solution of the Oseen equations in weighted
Sobolev spaces, see [Fal]. We use another possibil-
ity to avoid technique of single layer and double layer . L . .
potentials. We apply some localization procedure, D" (€)= {U € Ly () : D'u e LT(Q),]l] < m}
see e.g. [KoSo], for the extension of anisotropically
weighted estimates from wholR? onto the case of ith B Dly|? 1/q .
exterior domains. This method is efficient for various ™' [l = (lel:m Jo | D'u] ) as a semk-
modifications of the Oseen problem connected with horm. It is known thatD™ (2) is a Banach space
additional assumptions (e.g. rotation of a body etc.), (and if¢ = 2 a Hilbert space), provided we identify
see [Faz2], [Hi], [KNP1], [KNP2]). two functionsu;, ue whenevelu; — u2]m’q =0.

Forl < ¢ < oo we denote
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Let (L2 (R3; w))’ be the set of measurable vec-
tor functionsf onR? such that

1/2
€]l 55,0 = ( / |f|2wdx) ‘o
RB

We will
3
<L2 (R3; ng)) and | -[l,,5 instead of

||'H2,1R3;ng' Let us define the weighted Sobolev

9
use L. ; instead of

space H! <R3; ﬁggmgﬁ as the set of functions

2
uc Laoﬁo

The norm ofu € H' (]R?’; 50, ngll) is given by

with the weak derivatived;u € Lihﬁl.

2 - 2 2
||UHH1 (Rz)’;ngg’ngll) - HuHZ,ao,Bo + HquZalﬁl :

As usual,H' (Rg; 7758#)35) will be the closure of
(C°)? in HY (]R?’; ngg,ngll). For simplicity, we
shall use the following abbreviations:

H , instead of H' <R3; ngj,ng>

V.5 insteadof H' (IR{3; ng‘l,ng‘)

3 Results inR?

We recall results about weakly singular and singular
integral operators in anisotropically weighted Sobolev
spaces derived in [KNoPo] and in [Falp, € 2). We
use here the original notation.

Theorem 1 Let T' be an integral operator with the
kernel|O|, T': f — |O| = f, and let1 < p < co.
ThenT is a well defined continuous operator:

PR 5 P7%) s L2 (R 57777

for 0<f<p—1<(a+p/2)+5<3(p—1),

(a+p/2)=B<p-1, 0<(a+p/2) <2(p—-1),
e > 0.

Theorem 2 Let T' be an integral operator with the
kernel [VO|, T : f — |[VO|x f, andletl < p <
oo. ThenT is a well defined continuous operator:

PR g ™) e LP(R% )

for 0 < 6 < 3/2(p—1), —1+p/2 < (a+p/2)+ 8,
(a+p/2) <2(p-1), (a+p/2)-B<p-1

Theorem 3 Let T' be an integral operator with the
kernel|P|, T : f — |P| * f, and let1 < p < oc.
ThenT is a well defined continuous operator:

LP(R 5 %) v PR 5, )

for 0 < g <p—1, p—3 < (a+p/2)+8 < 3(p—1).

Theorem 4 Let T' be an integral operator in the
value-principal sense with the kern®P, T : f —
VP x f. Then T is well defined continuous operator:

a 2 a 2

PR 5 ™772) e PR 77)
forp>1, -1<p<p—1, -3<(a+p/2)+0<
3(p—1).

Remark 5 An additional investigation shows that in
the casep = 2 the estimate in the Theorem 1 is satis-
fied also for: = 0, see [Fal].

Let us assume for the simplicity the cgse= 2.
From the previous theorems we get in this case:

Corollary 6 (Existence irR?)

Let0 < B < 1,]al < B8,e>0, feLZ,
g € Wy"* with a compact suppotk” = supp g. Then
there exists a weak solutidmu, p} of the problem (1),
(2), (4) inR?, such thatu € L2 | 5, Vu € L2 5,

pells ,,Vpel?,, zand
||uH2,&—1—5,[3+||vu”2,a,ﬂ+||p||2,a,ﬁ—1+vaHQ,OH-LB
<C (Mlonirs+ lolhok) - ©

Theorem 7 (Uniqueness ifR?)

Let{u, p} be adistributional solution of the prob-
lem (1), (2), (4) such thatt € Dy* and p € L2, .
Thenu = 0 and p = const.

The proof of Theorem 7 is based on the Fourier trans-
form, see [KNP2] for the proof.

Sketch of the proof of the Theorem 7:

We haveVu € L?,u € L%, ue L?, j, ue §".
Because\p = 0, we get using the Fourier transform

A(—vAu+ kou) =0,
&P (—v IePa+kad) =o.

From this relation we follows supp C {0}, uisa
polynomial. u € L%, u =0, Vp =0, p = const.
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4 Results in exterior domains

Let 2 be an exterior domain with the Lipschitz bound-
ary 0€2. Our main results in weighted Sobolev spaces
in exterior domains are

Theorem 8 (Uniqueness in exterior domains)

Let{u, p} be a distributional solution of the prob-
lem (1)- (4) withf = 0 such thatu €V (©2) and
peL?,;(Q). Thenu=0andp = 0.

Theorem 9 (Existence in exterior domains)

Let Q C R3 be an exterior domain andl < 3 <
Lo<a<g fell, ;(9Q),g=0.Then there
exists a unique weak solutidnu, p} of the problem
(1)-(4) such thatn € L2 _, 45(2), Vu € LZ 5(Q),
pell,s (9),Vpell, ;(?) and

HuHQ,a—l,ﬁ;Q + HquQ,a,B;Q + ||p||2,o¢,ﬁ—l;Q

+IVpllent1p.0 < C Ifllent10- (6)

For the proofs of Theorems 8 and 9 see [KNP2]. The
proof of Theorem 9 is based on the localization pro-
cedure, see [KoSo]. The important steps in this proof
are

Lemma 10 Letf € D~12(Q). Then there is a weak
solution {u, p} of the problem (1)-(4) such that
Dy (Q)andp € L2, ().

Lemma 11 Let Q C R? be an exterior domain and
0<p<1,0<a<p, feLaHﬁ(Q),andKisa
compact subset 1. Then there exists a weak solution
{u, p} of the problem (1)-(4) suchthate V, g (€2),
pE Liﬁ*l (©), Vp e La+1 5 (@) and

Hv2uH2;K +lally o1+ 1Vully 4 5

+Pllgas-1 +11VPl2ar1s

< C (Il 01,5+ Il

whereA (p) := B, \ B, /2

1,2;A(p)

Sketch of the proof of Theorem 8 We will
prove that the solutiofu, p) is unique inVy o (©2) x
L2,,(Q). Let® = ®(z) € C3°((0,+0)) be a
non-increasing cut-off function such théiz) =
for = < 3 and®(z) = 0 for z > 1. Let [®/| < 3. Let

op=p(2) =@ (). Wehavgver (z) < 3-4

and|9,®p| < 3- fforz € Q, & < |z| < R. Let
{R;} € R be an increasing sequence of radii with
the limit +00. So we have that;; = u - &5, €H'.
So, {u,} is a sequence of functions with limit in
the spacéV,, z. Using the (non-solenoidal) test func-
tionsy = u- &% = u; - b, €H' in we get:

V/Vu'V
Q

+/Vp-u-<l>%j-dx:0.

(uq)%%) ‘dx—l—k/alu-u‘@%jdx

Using relations
Vu-V (ud} ) = [Vu,l* - Vg, - Vo, v,

integrating by parts, we get after some evident rear-
rangements

k
u/\Vuj|2‘dx—2/u2‘ 81<I>%j -dx
Q Q
2.2 2 _
—u/\vq>Rj\ u dx—/pu-v (@%,) ax =0,
Q

Q
2
1//|Vuj| - dx
Q
<C /u2 —-dx + / Ip| - lu| - = - dx
T
ng/z ng:/?

Because we hava € L, (Q), pu € L?,,(Q),
for j — oo we get

/\Vu|2 -dx < 0.
R3

So, the functioriVu = 0 a.e. inQ2 and this means
is a constant a.e. ift. Fromu € LZ_L0 () follows
thatu = 0 a.e. in). Substituting now arbitrary test
function ¢ into the original equation, we get

/Vp-¢-dx:0.
3

So, the functiortWp = 0 a.e. inQ) and this meang is
a constant a.e. ift. Fromp € L? | ; () follows that

p =0 a.e. in). So, the uniqueness is proved.



Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp57-60)

Sketch of the proof of the Lemma 1Eix p > 0
sothatR?\Q C B, /. Take¥ € C§°, supp¥ CC B,
such thatV = 1 on B, ,. By use of cut-off function
U we decompose the solutiqm, p} as

u=U+V whereU=(1-Y)u,
where o = (1 — U) p,

V = Uu,

p=oc+T T=Up.

So, we getthafU, o} is weak solution of the problem
in R3:

v AU+kohU+ Vo =
divU =

VA
—VV¥u

whereZ, =2VV¥ -Vu+u AV —ko1Yu— VU p+

(1 —)f. Analogously{V, 7} is a weak solution of
the Stokes problem assumed in a bounded domain.
Using now Theorem 7 and the estimate of a solution
in R? we deduce the assertion of Lemma 11.

Sketch of the proof of the Theorem 9=t us as-
sume that the estimate of Lemma 11 is not true with-
out the additional terms on the right-hand side. This
means that there is a sequence of functiffag, cor-
responding solution§(uy, px) } and{C}} — oo such
that

1= lugllon g, + 1kllan_15+ IVUklla,
+ ||pk 2,a,8-1 + HkaHZa—l-l,ﬁ
= || (uk, pi)ll(2) = Ck fkllg 0s1,5-

So we get{||fk||27a+w} — 0. The sequence

{(ug, px)} is bounded in the norry [ 5 so, there is a
subsequence of this sequence (we will denote this sub-
sequence using the same notation) with the weak limit
(u, p) in the corresponding Hilbert spaés,. The ad-
ditional terms on the right hand side we denote by the
norm

H(ubpk)ug) = Huk”l,z;A(p) + ”pkHO,z;A(p)

and the corresponding Hilbert spafle. Becauses

can be chosen taken such thatp) C K;, we
have H, —< H;, hencel|(ux, px)|[;y — 0. So,
(u,p) is a solution of the problem with zero right-
hand side. Due to uniqueness from Theorem 8 we can
conclude thaf|(u,p)|,) = 0. From the Lemma 11
we get||(u; — u, p — p)ll(5) — 0. So we have also
[(u, )2y = 1 and we get the contradiction.
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