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Abstract: - Estimation of the hydraulics of the flood wave propagation due to multiple dam breaking is quite 
complex and realistic answers are difficult to be given by commercially available packages. Some of the 
complexities of the problem are discussed, including those related to flood routing through a reservoir. Suggestions 
to overcome the difficulties are given along with a real life application of the procedure proposed. 
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1  Introduction 
The growing concern about possible environmentally 
adverse impacts due to eventual failure of civil 
engineering projects, encompasses cases where dam 
breaches can release in short time enormous amount 
of water into natural watercourses. This could pose a 
serious threat to human life and property downstream 
of the failed dam. To assess the associated risk a 
detailed description of the hydraulics of the resulting 
flood wave is required. Many efforts were made 
during the past century or so to treat the problem of 
the shock wave formation due to a dam break. 
Pioneering works such as those of Ritter [33], 
Dressler [10], Stoker [39] were followed by more 
sophisticated mathematical approaches, such as those 
of Rajar [32], Sakkas and Strelkoff [35], Hunt [20], 
and further by studies involving detailed description 
in time of the formation of the dam breach, e.g. 
Broich [4], Paquier et al. [30]. The propagation of the 
resulting flood wave has also received extensive 
attention by researchers. The one-dimensional case is 
almost exclusively treated through solving the St 
Venant equations of gradually varied flow [34]. 
Following Stoker’s numerical solution [39], a variety 
of numerical schemes were applied ranging from the 
classical method of characteristics  (Abbott [1]) to 
finite difference methods, e.g. Cunge et al. [8] and 
finite element schemes, e.g. Fread [13], Szymkiewicz 
[42]. A crucial point in these treatments is the 
capturing of the shock discontinuity present through 
the early stages of the wave propagation. This can be 
better achieved by employing an integral approach, 
such as the modified Godunov technique (Godunov 
[17], Savic and Holly [36]). A further complication 
arises when the flood wave encounters during its 
propagation a reservoir of appreciable depth. Even if 
the geometry of the reservoir can be assumed as one-

dimensional, the formulation of the problem involves 
now a vertical dimension that plays a significant role 
in determining the exact flow characteristics, 
especially at the initial stage of the plunging of the 
flood wave into the still reservoir water. There, if the 
flow retains still the characteristics of a shock wave, it 
cannot be regarded any longer as gradually varied and 
the St Venant equations may not be applicable in this 
region. In areas of horizontal expanse, such as in 
floodplains, two-dimensional treatment of the model 
equations is needed. A simple approach is based on 
the one-dimensional diffusive wave equation, e.g. 
Strelkoff et al. [40], Fread [13], Han and Park [18]. 
However, there are limitations in using the diffusive 
wave model related to the width of the flooded area 
(Moussa and Bocquillon [28]). Another approach is to 
solve the two-dimensional flow equations by finite 
difference methods as in Xanthopoulos and Koutitas 
[43], by the characteristics method (Katopodes and 
Strelkoff [22]), or by finite element methods, e.g. 
D’Alpaos et al. [9]. 
     Across many rivers around the world, dams are 
built for hydropower generation, water supply, 
irrigation and other uses. Full exploitation of these 
capabilities leads to building several dams along the 
same watercourse. Studying, therefore, a dam break 
event in a situation with multiple “in-line” dams 
present, involves all above mentioned individual 
problems leading to a complex situation difficult to 
analyze and predict. The flow conditions can be either 
gradually or rapidly varying, in one or two horizontal 
–and at places two vertical– dimensions. Depending 
on the location of the failing dam with respect to the 
other dams of the river, as well as on the amount of 
water stored in the downstream reservoirs, the breach 
of the downstream dam(s) has to be estimated. The 
actual breach of the dam(s) is usually due to either 
overtopping or piping. It is evident through the above 
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brief exposition that in order to evaluate the flooding, 
and the associated risk, due to sequential dam 
breaking, an array of possible scenarios should be 
developed. These should be provided with the 
appropriate interfacial modules between the various 
flow conditions, i.e. wave propagation, reservoir 
routing, dam breach, floodplain inundation. It is also 
noted that the input conditions should only be applied 
to the dam to fail initially, while the fate of the rest 
downstream dams has to be assessed depending on the 
conditions prevailing in each scenario considered. In 
this paper an attempt is made to combine solutions to 
all previously mentioned individual problems into a 
coherent approach, easy to apply. The study was 
initiated by the request of the Power Corporation of 
Greece to evaluate possible dam break events along a 
river in northern Greece, where five dams are located. 
 
 
2  The Breach of a Dam 
The dam breach models commonly used determine 
the following main characteristics of failure: (a) 
Failure time, tF, (b) Breach position and dimensions as 
varied with time, (c) Dam-Break Hydrograph (DBH). 
The DBH is used as the upstream condition for the 
flood wave routing downstream of the dam site. The 
most important characteristics of the DBH are the 
peak flow, QP, and the time to peak flow, tP. The 
corresponding characteristics of the associated stage 
hydrograph are equally important. The breach model 
to be used in each case depends primarily on the type 
of dam failure, e.g. overtopping, piping, structural 
failure.   

There are various models in the literature dealing 
with the modeling of the breaching of earthen dams 
due to either overtopping or piping. A brief 
description with application of such models can be 
found in the proceedings of the Concerted Action on 
Dambreak Modelling (CADAM) project [6]. The 
CADAM project has been set in motion by the 
European Union to investigate current methods and 
their use for simulation and prediction of the effects 
of dam failures. The main conclusions of the 
proceedings of the CADAM project  and other similar 
research works are the following: 

(a) The accuracy of existing breach models, which 
are developed mainly for earthen dams, is very 
limited. The accuracy of predicting QP is estimated at 
±50%, while that of tF is considerably worse. Similar 
results have been found by Stamou et al. [38]. 
(b) The uncertainly of the whole dam break 

modelling  process stems mainly from the uncertainly 
of the breach models.   

It is this evident that there are aspects of the problem  
not yet fully answered and, therefore, research on 

these is still going on, e.g. Chauhan et al. [7], Wahl  
[43], Leopardi et al. [25]. 

Up to now the most well known model for breach 
of earthen dams is the NWS BREACH [12], a 
deterministic model in one horizontal dimension, used 
to predict the main characteristics of failure. 
BREACH couples the conservation of mass of the 
reservoir inflow, spillway outflow, and breach 
outflow with the sediment transport capacity of the 
unsteady uniform flow along an erosion-formed 
breached channel. The bottom slope of the breach is 
assumed to be essentially that of the downstream face 
of the dam. The downstream face of the dam can have 
a grass cover or  a material of larger grain size than 
the outer part of the dam. The growth of the breach 
channel depends on basic properties of the 
construction materials, i.e. D50 size, unit weight, 
friction angle, cohesive strength.  

 
 

3  Wave Propagation on the River Bed 
The flood wave formed by the dam breach will 
propagate downstream along the natural watercourse, 
considered in most cases of one-dimensional 
geometry. Under this assumption the unsteady flow 
describing the flood wave propagation is governed by 
the St Venant equations, where the pressure is 
assumed hydrostatic. As mentioned in ch.2 the 
realistic representation of the dam breaking process 
smooths out the strong discontinuity the outflow 
hydrograph would have in case of a sudden dam 
break. The applicability of the propagation model  
can, therefore, extend upstream, close to the failed 
dam site. The governing relations are nonlinear 
hyperbolic partial differential equations, representing 
the conservation of mass and momentum along the 
direction of the flow: 
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where A(x,t) is the wetted cross-sectional area, Q(x,t) 
is the discharge through any particular cross-section, 
Sf is the friction slope, So is the bed slope, and g the 
acceleration due to gravity. I1 represents the 
hydrostatic pressure force, while I2 expresses the 
pressure force due to longitudinal width variations. 

Five different finite difference explicit schemes 
were applied to solving eqs (1), (2), as follows: (a) the 
first-order Lax-Friedrichs scheme (LF), [15], [24], (b) 
the first-order central scheme of Kurganov-Tadmor 
(KT), [23], (c) the second-order central scheme of 
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Kurganov-Tadmor (KT2), [23], (d) the second-order 
central scheme of Nessyahu-Tadmor (NT2), [29], (e) 
the total variation diminishing-MacCormack scheme 
(TVD-MacCor), [16]. The first four numerical 
schemes use a Godunov-type approach [17] for the 
integration of eqs (1),(2). The fifth one (TVD-
MacCor) is a predictor-corrector scheme, using a 
shock-capturing technique with second-order 
accuracy both in time and space. The above five 
schemes were tested in two different types of open 
channel flow, for which analytical solutions exist: 

(i) idealized dam break flow in a horizontal, 
frictionless, rectangular channel, for various 
tailwater depths, including dry bed. 

(ii) steady state flow in channel of variable bed 
slope as described by MacDonald et al. [27]. 

Representative results in terms of velocity distribution 
along the dry channel 15sec after dam failure 
(problem (i)) are given in Fig.1, where the four 
numerical schemes (a) to (d) are compared with the 
available analytical solution.  
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Fig.1. Predicted velocities vs analytical solution 
 
The fifth scheme (TVD-MacCor) did not produce 
stable results for dry downstream channel. Error 
analysis for both dry and wet bed conditions showed 
that for problem (i), NT2 behaved better among the  
schemes tested. Similar analysis for problem (ii) 
showed schemes TVD-MacCor and NT2 to 
approximate more closely the analytical solution than 
the others, Fig.2. However, the former was rather 
sensitive to the discretization applied and displayed 
convergence problems. 
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Fig.2. Predicted water depth vs analytical solution 

Thus scheme NT2 was selected as the most robust and 
reliable, and was further compared with the 
commercial code BOSS DAMBRK [14]. This latter 
model is extensively used for flood wave routing. Its 
governing equations are the expanded one-
dimensional St Venant equations of unsteady flow, 
i.e. eqs (1), (2) with additional terms for channel 
expansion, lateral inflow, etc. The system is solved by 
a nonlinear weighted 4-point implicit finite-difference 
method. The two numerical models (NT2 and 
DAMBRK) were applied to the routing of a triangular 
input hydrograph in a prismatic channel. Comparison 
of the results showed that water depths were almost 
identical between the two models, whereas arrival 
times of the flood wave were quite close (Fig.3).  
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Fig.3. Time-to-peak values along a prismatic channel 
 
 
4  Propagation through Reservoirs 
The general case of fluid motion is described by the 
Navier-Stokes equations [31]. These are simplified to 
the St Venant equations (1), (2), under the assumption 
of gradually varied flow, leading to hydrostatic 
distribution of the pressure. In a multiple dam-break 
problem there are, however, reaches of rapidly varied 
flow that such a simplification does not hold. One 
such case occurs at the failed dam site, where the 
vertical velocities of the flow cannot be ignored. This 
complication is successfully overcome by using a 
suitable code to simulate the breaching of the dam 
(ch.2) and to provide the outflow hydrograph just 
downstream of it. This hydrograph is used as an input 
to the flood routing code along the watercourse (ch.3). 
Another case where the vertical velocities should be 
taken into account refers to the entrance of the flood 
wave into a deep reservoir. This is a situation met in 
some multiple dam-break problems. We limit our 
discussion to the commonly encountered case where 
the reservoir extends in only one horizontal 
dimension. 

Hydrograph routing through a reservoir can be 
performed at a lower approximation through 
hydrologic storage routing techniques, based on the 
law of mass conservation.  It is also assumed that 
reservoir outflow is only a function of the (horizontal) 
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water level. Application of these methods is 
appropriate when it can be assumed that the water 
level changes simultaneously over the whole 
reservoir, i.e. the latter is not longer than a few miles; 
the exact characteristics of the flow along the 
reservoir are not important; and simplicity is required.  

A better approximation of the hydraulics along 
the reservoir can be achieved through dynamic 
routing, i.e. by solving the St Venant equations, e.g. 
Stoker [39], Garrison et al. [26]. However, even in 
this advanced approximation, vertical velocities or 
shock conditions that violate the hydrostatic 
assumption of pressure distribution cannot be 
reasonably described. Under such circumstances it is 
advisable to revisit the Navier-Stokes equations. 
Nowadays there are numerical models that 
approximate the full Navier-Stokes equations, e.g. 
Horrillo and Kowalik [19]. Application of these 
models to cases of rapidly varied flow with non-
hydrostatic pressure distribution, as e.g. at dam 
breaking, gives results close enough to those of the 
approximate nonlinear shallow water (NSW) 
equations incorporating a shock capturing method, as 
e.g. the method of characteristics.  

Similar situation would apply to the case under 
consideration, i.e. at the entry of the flood wave into 
an one-dimensional deep reservoir of variable depth. 
At the upstream reach of the reservoir a NSW 
approximation capable of describing an advancing 
wave front over still water, as in the dam-break 
analytical solution, is thus acceptable. The flood wave 
will travel over a short distance in a bore-like fashion 
described above and then its plunging into the still 
reservoir water will mobilize the latter by producing a 
kind of shallow water wave, e.g. a flat solitary wave, 
that would travel the remaining reservoir length. 
Apparently this complex phenomenon cannot be 
described easily in quantitative terms. The initial 
phase of flow into the water reservoir, prior to surface 
wave formation, can be addressed roughly by 
representing the hydrograph as a simple shock wave 
and by using the analytical expressions of the 
equivalent dam-break problem as follows. The wave 
front celerity c and the upstream velocity u are given 
by  
 

( )[ ] 2
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where h1, h2 the downstream, upstream depths 
respectively. 

The above expressions can be used in a 
formulation, where by increasing in each space-step 
the still water depth by ∆h and assuming over the 

length of constant depth one of either c or u to be 
constant, the water depth is estimated. In reality 
neither of c, u remains constant. Simple variational 
algebra shows that for h2>2.41h1 c decreases weakly. 
In deeper waters c increases strongly, thus a finer grid 
may be justifiable there, within the framework of this 
approximation. However, in that range (h2<2.41h1) the 
variation of c is weaker than the corresponding 
variation of h2; similarly u displays there weak 
variation. That is why variables u, c were selected as 
the “constants” of the algorithm in an alternating 
fashion, over consecutive space-steps of the problem. 
The above-mentioned approximate treatment of the 
flood wave hydraulics refers to the initial stages of the 
flow plunging into the reservoir waters at its upstream 
reach.  

The physics downstream of this plunging would 
be adequately described by shallow water wave 
propagation, as e.g. by a solitary wave of more or less 
permanent form. However, it should be pointed out 
that the determination of such a wave, mainly its wave 
height, is quite a complex undertaking. Therefore, the 
usual practice, transplanted in the commercial codes 
also, is to apply the St Venant equations throughout 
the propagation of the flood wave along the total 
length of the reservoir. Such an approach would 
assume that the initially still water at the upper reach 
of the reservoir would be rather shallow, thus 
mobilized as long as the flood wave enter the 
reservoir and would participate wholly in the flow, 
down to the reservoir bed. Use of St Venant’s 
equations in the above context is sometimes described 
as dynamic routing of the flood wave through a 
reservoir. 
 
 
5  Flood over Plains     
It is quite common that after a travel of the flood 
wave over a long one-dimensional reach of the natural 
watercourse, it arrives finally a low-lying plain. 
There, the two-dimensional nature, in the horizontal 
sense, of the flow should be taken into account. There 
exist several models in the recent literature dealing 
with the 2-D modelling of the flood propagation over 
plain; see e.g. Alcrudo and Garcia-Navarro [2], 
Fraccarollo and Toro [11], Brufau and Garcia-Nacarro 
[5], Bradford and Sanders [3], Jha et al. [21]. A 
relatively simple model for the calculation of flood 
propagation in two dimensions is the model FROM-
2D (Flood Routing Model in 2 Dimensions), 
developed in the NTUA (Stamou, [37]). It involves 
the 2-D continuity and momentum equations of 
unsteady flow for approximately horizontal flow, 
written as follows. 
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where x1, x2 horizontal co-ordinates; i=1, 2; h flow 
depth; u1, u2 flow velocity component in x1, x2 
direction respectively; Qx1=u1h, Qx2=u2h flow rate per 
unit width in x1, x2 respectively; SOx1, SOx1 bottom 
slope in x1, x2 respectively; Sfx1, Sfx2  friction slope in 
x1, x2 respectively; g acceleration due to gravity. 

The friction slope can be approximated by 
Manning’s expression for uniform flow. Ignoring the 
acceleration terms in the momentum equations (6), the 
friction slopes in x1 and x2 directions are equal to the 
corresponding surface slopes and equations (5) and 
(6) can take the following final form 
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where z is the ground elevation, K Manning’s 
roughness coefficient. 

In FROM-2D, equations (7) and (8) are solved 
using the finite differences method in a staggered 
grid, employing central differences for spatial 
discretization and explicit temporal discretization, to 
determine ui and h. 
 
 
6  The Study Area 
The previously described approaches and 
considerations were applied in an integrated way to a 
real-life problem pertaining to a 300km long river in 
northern Greece with 5 hydroelectric dams along its 
route (Fig.4). The study area included: 

(i) A stretch of 123km extending from the 
upstream end of the reservoir of the upstream dam 
(dam #1) to the most downstream dam (dam #5). It 
is important to note that 93% of this stretch is 
occupied by the reservoirs of the 5 dams. Nine 
villages were located close to the watercourse at 
relatively low elevations. Three road bridges were 
crossing the river section between the 5 dams. The 
main dimensions of the dams and their associated 
reservoirs are given in Table 1. 

(ii) A cultivated plain downstream of dam#5 
covering an area of about 1100km2 with maximum 
difference in elevation of about 20m.  

 
TABLE 1 

KEY DATA OF DAMS AND RESERVOIRS 
 

NO 
Dam 

Height 
(m) 

Dam 
length 

(m) 

Max.Water 
Surface 
(km2) 

Reservoir 
length 
(km) 

1 100 500 27 46.6 
2 97 295 73 41.8 
3 66 260 5 9.8 
4 48 200 3 12.6 
5 14 1200 2 3.8 

 
The river crosses the plain close to its southern 

boundary for 50km before discharging into the sea. A 
large drainage channel combines its discharge with 
the river flow at an upstream location in the plain, 
while another one flows independently close to the 
northeastern border of the plain. The plain is also 
crossed by four main roads and one railroad built 
mainly on embankments up to 6m high. Four main 
bridges were crossing the river along its floodplain 
route. In total 51 villages and small townships were 
dispersed in the floodplain sited on average elevations 
from +2.5m to +29.8m above MSL. 

 
Fig.4. Location of the study area 

 
 
7  Methodology Applied 
 
7.1 General 
In total 13 scenarios of flood wave routing were 
investigated, based on the following parameters: 

(i) Upstream dam to break 
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(ii) Cause of initial dam break, i.e. either   
overtopping or piping 

(iii) Empty or full reservoir #2 
Additionally comparison checks were performed 
between runs using either BREACH or DAMBRK to 
simulate the initial dam break. 

Six individual problems were addressed, that if 
linked properly together the complete picture of the 
sequential dam-break flooding would emerge. These 
problems refer to the breach of a dam, the one-
dimensional routing of the flood wave over a dry bed, 
the routing through a one-dimensional (horizontally) 
reservoir, the flood wave run-up on the upstream 
slope of dam, the eventual modification of the flow 
due to bridges, and the two-dimensional expansion 
and propagation of the flood over the low lying plain. 
In the following a brief description on the applied 
treatment to each one of those problems will be given. 

 
7.2 Dam breach 
As mentioned previously, simulation of the dam 
breach was performed by both models BREACH and 
DAMBRK. The latter was found to behave more on 
the safety side as regards dam failure due to piping, 
thus it was used in 3 scenarios, out of the 13 in total, 
involving this type of failure. In the remaining 
scenarios BREACH was used, since in this model the 
time to breach and other parameters of the problem 
are not selected arbitrarily but rather are calculated 
based on the properties of the dam materials.  

The input data into the BREACH model include 
the following: reservoir characteristics, breach initial 
characteristics, inner and outer core characteristics, 
and dam face description. The model is founded on 
physical grounds dealing with the mathematical 
description of (i) breach hydraulics (flow over broad 
crested weir or in a pressure pipe), (ii) soil mechanics 
(stability of soil slopes) and (iii) sediment transport. It 
calculates the temporal evolution of the dam breach 
characteristics (size, shape and time of formation), 
and then displays the graphs of the computed breach 
outflow hydrograph. The results can then be used as 
input to the DAMBRK model so that flood routing 
calculations be performed. 
 
7.3 Flood routing along the valley   
 
7.3.1 Routing over a dry watercourse 
Along the stretch of the river were the 5 dams were 
present, there were two sections where dry-bed 
conditions were encountered. The first, downstream 
of dam#1 down to reservoir #2, of length 5.8-9.8km 
depending on the downstream reservoir level, and the 
second, downstream of dam #2 down to reservoir #3, 
of length 6.1km. Flood routing along these sections 

was performed by use of the numerical model 
DAMBRK of BOSS [14]. The output of the model 
used subsequently was the computed hydrograph at 
the upstream end of the reservoirs #2 and #3. 

Code DAMBRK was finally used in the real 
sequential dam-break problem due to the following 
reasons: 

(i) It uses a scheme of the implicit type, thus it 
tends to give results independent of the selection of 
the time step 

(ii) The convergence is quicker and the 
computational time lower, since there is no 
restriction by the Courant-Friedrichs-Lewy 
criterion, as is the case for the NT2 scheme 

(iii) Its wide application worldwide gives extra 
confidence, especially to the authorities that will at 
the end manage such catastrophic events.  

 
7.3.2 Routing through the reservoirs   
As noted earlier, dam breach by overtopping was 
treated by BREACH model, which manages only 
storage routing in the associated reservoir (ch.4). In 
contrast, any closer approximation to reality, as e.g. 
through dynamic routing, would give a better 
indication of the inundation area along the reservoir 
length. Also, at the upstream reach of the reservoir a 
rapidly varied flow technique might be used. In our 
case a justifiable approximation was applied, due to 
the fact that the upstream bed, in all four reservoirs, 
was mildly sloping downstream, thus no excessive 
vertical velocities were anticipated there. The 
approximation consisted of interpolating linearly 
along the reservoir the known maximum water depths 
at the upstream end of the reservoir and at the dam 
site. The former was supplied by the DAMBRK 
routing over the dry bed section, in case such section 
existed, or through the dam breach hydrograph 
provided by BREACH in case of cascading reservoirs 
with no dry section between them. The water depth at 
the dam site was produced as output of the dam 
breach procedure simulated by the BREACH, or 
DAMBRK, model. It can be easily shown that this 
technique is conservative in most cases along the 
upstream part of the reservoir. In our case, the villages 
at critical low levels were located in that part. 
Therefore, the conclusions arrived at were thought to 
represent an upper limit of risk conditions. 
 
7.3.3 Flood wave run-up  
Some of the scenarios tested assumed the reservoir #2 
at low level. The question thus arose, whether the 
flood wave produced by the breach of dam #1 would 
be able to overtop dam #2. Level pool routing of the 
inflow hydrograph to reservoir #2 showed no 
overtopping of the dam crest, but it is evident that no 
dynamic effects, such as wave run-up, can be 
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simulated by this method, or even by the more 
accurate dynamic routing. 

A rough conservative estimate was achieved by 
assuming that the surface wave formed by the flood 
wave entering the reservoir carries nearly the same 
amount of energy, kinetic and potential, as the 
incoming wave front. By representing the generated 
water hump by a solitary wave, an upper bound of the 
resulting wave height can be estimated. It is reminded 
that the total wave energy per crest width of a solitary 
wave is  

 
2

3
2

354.1 dgHE ρ=     (9) 
     
where ρ the water density, H the wave height, d the 
water depth measured from still water level.  

It is also known that the maximum wave height 
before breaking is dH 78.0max = . Having thus 
estimated a conservative value for the height of the 
wave propagating along the reservoir, an equally 
conservative value of the wave run-up R on the 
upstream face of the dam can be calculated. This was 
done by employing the formula used in tsunami 
applications, namely Synolakis [41] 
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where, d was taken here as the water depth at the 
upstream toe of the dam structure. Comparison of the 
obtained upper level of wave run-up with the dam 
crest leads to whether the latter will be overtopped by 
the flood wave. 
 
7.3.4 Bridges 
The underbridge flow capacities were checked against 
the required maximum discharge of the flood wave. In 
order to be able to decide whether an obstacle, such as 
a bridge, would modify the flow conditions, the 
integrity of the structure should be assessed. To this 
end a simplified drag D was calculated by the formula 
 
 2

DρC / 2D Eu≈      (11) 
 

where, E cross-sectional area of flow impingement, u 
flow velocity, CD drag coefficient, dependant on the 
shape of the bridge member loaded 
hydrodynamically. The assessment on the possible 
bridge failure was based on the magnitude of D above 
and the characteristics of the structure. 
 
7.4  Flood plain propagation  
In the present work the model FROM-2D of the 
NTUA was used to represent flow conditions over the 

low-lying plain, mainly because of its simplicity. The 
input data into the FROM-2D model include the 
geometry of the floodplain and the upstream 
hydrograph emerging from the downstream section of 
the valley routing. The model calculates the horizontal 
flow velocities and water depths. The topography of 
the computational domain, including abrupt changes 
such as roads, embankments etc., was taken into 
account by simply inserting into the model the actual 
final levels of these man-made constructions. 
Inferences were then drawn on the structural integrity 
of these line-obstacles, by comparing the flow depth 
over their crest elevation with accepted thresholds of 
these depths denoting the beginning of the erosion 
process. 
 
 
8 Results and Discussion 
An array of technical data resulted from the 
application of the above described models and 
procedures. These included characteristic values of 
dam breach parameters; flood wave propagation data 
along the valley; flow rate and stage hydrographs at 
characteristic cross-sections of the watercourse; 
inundation zones along the valley as well as over the 
plain downstream of the dams; arrival times of the 
flood wave and of the maximum water depth; time 
history of water depth at the villages; etc. 

It was found that for the most critical scenario 
most of the settlements of the plain will be inundated, 
whereas in the same area the maximum flow 
velocities fall around 4m/sec. Drainage times ranged 
from 5hr to 25hr or more in some villages. A 
representative diagram of the maximum flow depths 
over the plain for one of the scenarios tested is given 
in Fig.5. 

 
 
Fig.5 Maximum flow depths over the plain 
 
It was also estimated that appreciable lengths of 

two of the three highways crossing the plain will be 
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severely damaged, as well as the embankments of the 
major drainage canal of the area. Severe damages or 
failures will also suffer most of the main bridges both 
along the valley and over the plain. Some guidelines 
were finally given related to the development of a 
monitoring and warning system in the area under risk 
of flooding. A crucial point in such a system relates to 
the clear definition of the start time where all time 
values refer. The competent authorities should take 
due consideration of this point. 

 
 

9  Conclusions 
The problem of multiple dam break was briefly 
described and its components analyzed. Competent 
models have been developed capable of addressing 
adequately, despite inherent numerical shortcomings, 
each individual component of the problem, as e.g. 
dam breach, flood propagation over dry bed, etc. 
However, treatment of complex configurations, as the 
one described in this paper, cannot be easily 
performed by widely accepted commercial models, as 
the ones used here. One main disadvantage remains 
the poor modelling of the flood flow along long valley 
deep reservoirs. In this respect routing through the St 
Venant equations seems to be the best available 
means of those models as yet. This option is 
incorporated in model DAMBRK. The latter, 
however, cannot describe the dam break based on 
physical grounds, in contrast with model BREACH, 
that can give a better approximation of the 
phenomenon. One possible improvement would be to 
analyze first the dam break through BREACH, 
determine hence the key break parameters and input 
them into the DAMBRK to perform the dynamic 
flood routing in the reservoir at the same time with the 
dam break with calculated rather than arbitrarily 
defined breach characteristics. This technique is 
currently used successfully in a similar project on 
another large Greek river with five in-line dams. 
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