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Abstract: - Considering time-periodic Oseen flow around a rotating body inR3 we provea priori estimates
in Lq-spaces of weak solution for the whole space problem. After a time-dependent change of coordinates the
problem is reduced to a stationary Oseen equation with the additional terms(ω × x) · ∇u andω × u in the
momentum equation whereω denotes the angular velocity. Assuming that forcef has a formf = ∇ · F , we
proveLq-estimates of weak solution using a theory of Littlewood–Paley decomposition and of maximal operators.
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1 Introduction

Over the past years, there has been a great impulse in
studying the motion of a rigid body. The first system-
atic study on this subject initiated with the pioneering
work of G. Kirchhoff [K], Lord Kelvin [T] regarding
the motion of one or more bodies in a frictionless liq-
uid. After that many mathematicians have furnished
significant contributions to this fascinating field under
different assumptions on the body and on the fluid. We
wish to quote the work of H. Brenner [B] concerning
the steady motion of one or more bodies in a linear
viscous liquid in the Stokes approximation, further
H. F. Weinberger [W1]-[W2] and D. Serre [S] re-
garding the fall of a body in an incompressible Navier-
Stokes fluid under the action of gravity. Recently see
e.g. G. P. Galdi, A. L. Silvestre [GS], R. Farwig,
T. Hishida, D. M̈uller [FHM], R. Farwig [Fa1,Fa2],
T. Hishida [H1]–[H3], M. Hieber, M. Geissert,
H. Heck, [HGH], S. Krǎcmar,Š. Něcasov́a, P. Penel,
[KNPe1,KNPe2], R. Farwig, M. Krbec,̌S. Něcasov́a
[FKN1, FKN2], R. Farwig, J. Neustupa [KN].

Before describing the main results, we would like
to introduce some basic problems of practical interest.
The orientation of long bodies in liquid of different na-
ture is a fundamental issue in many practical interest.
A first, fundamental step in modelling and the orien-
tation of long bodies in liquids is to investigate experi-
mantally their free fall behavior (sedimentation), both
in Newtonian and viscoelastic liquids see [Le], [PC].
The addition of short fiber-like particles to a polymer

matrix is well-known to enhance the mechanical prop-
erties of thecomposite material, see [Ad]. Typical
sizes of a fiber are hundred micrometers in diameter
and a centimeter in length [Ad]. The degree of en-
hancement depends strongly on the orientation of the
fibers and the fiber orientation is in turn caused by the
flow occurring in the mold ; see [LYKU]. Very impor-
tant isseparation of macromolecules by electrophore-
sis. Electrophoresis is a dominant analytical separa-
tion technique in the biological technique in the bio-
logical sciences [GRO]. Modern applications include
weight determination of proteins [HR], DNA sequenc-
ing [Tr], and diagnosis of genetic disease [Bo]. Elec-
trophoresis involves the motion of charged particles (
macromolecules) in solution, under the influence of an
electric field. Certain types of macromolecules have
a symmetric and rigid straight-rod shape and several
hundreds nanometers in lenght [GRO]. The orienta-
tion of the molecules plays an important role, since
it is responsible for the loss of separability during
steady-field gel electrophoresis [GRO], [TMW]. We
would like to mention flow-induced microstructures.
Particle pair interactions are a fundamental mecha-
nism that enter strongly in all practical applications
of particulate flows [Jo],[Ro]. They are due to iner-
tia and normal stresses and are maximally different
in Newtonian and viscoelastic liquids [JLPF]. In the
most well-studied case of fluidized spheres, the princi-
pal interaction between a neighboring pair is described
by the mechanism of drafting, kissing and tumbling in
Newtonian liquids, and or drafting, kissing and chain-
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ing in viscoelastic liquids [Jo1], [Jo2]. A first, funda-
mental step in modelling and the orientation of long
bodies in liquids is to investigate experimentally their
free fall behavior (sedimentation), both in Newtonian
and viscoelastic liquids see [Le], [PC], [PGG].

2 Formulation of the problem

In this paper we consider a three-dimensional
rigid body rotating with angular velocityω =
ω̃(0, 0, 1)T , ω̃ 6= 0 and assume that the complement is
filled with a viscous incompressible fluid modelled by
the Navier-Stokes equations. We consider the viscous
flow either past a rotating bodyK ⊂⊂ R3 with axis
of rotationω and with the velocityu∞ = ke3 6= 0 at
infinity or around a rotating bodyK which is moving
in the direction of its axis of rotation. After changing
of the coordinate system, considering thatu∞||ω and
linearizing inu we get the following system

−ν∆u+ k ∂3u− (ω ∧ x) · ∇u+ ω ∧ u+∇p
= f (1)

div u = 0 (2)

u → 0 as |x| → ∞. (3)

The linear system (1)–(3) has been analyzed inLq–
spaces,1 < q <∞, in [Fa1,Fa2] proving thea priori
- estimate

‖ν∇2u‖q + ‖∇p‖q ≤ c‖f‖q, (4)

‖k∂3u‖q + ‖(ω ∧ x) · ∇u+ ω ∧ u‖q

≤ c(1 +
k4

ν2|ω|2
)‖f‖q (5)

with the constantc > 0 independent ofν, k, ω.
We introduce notation and then we will give a

formulation of our problem.
Given a domainΩ = R3, the classC∞

0 (Ω) con-
sists ofC∞ functions with compact supports contained
in Ω. By Lq(Ω) we denote the usual Lebesgue space
with norm‖ · ‖q,Ω,

Lq
0(Ω) = {u ∈ Lq(Ω) :

∫
Ω
u dx = 0},

D(∆q) = W 2,q(Ω) ∩W 1,q
0 (Ω).

We define the homogeneous Sobolev spaces

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q,R3

= {v ∈ Lq
loc(R

3); ∇v ∈ Lq(R3)3}/R,
(6)

and their dual space

Ŵ−1,q(R3) = (Ŵ 1,q/(q−1)(R3))∗, (7)

with norm‖ · ‖−1,q,R3 .

Remarks: We would like to mention that the dual
space of a domain from Assumption I (ii), (iii) have to
be define in the following way

W−1,q(Ω) = (W 1,q′(Ω))∗.

Let us consider the problem (1)- (3).

Definition 1.
Let 1 < q < ∞. Given f ∈ Ŵ−1,q(R3)3, we call
{u, p} ∈ Ŵ 1,q

0 (R3)3 × Lq(R3) weak solutionto (1)–
(3) if

(i) ∇ · u = 0 in Lq(R3),

(ii) (ω ∧ x) · ∇u− ω ∧ u ∈ Ŵ−1,q(R3),

{u, p} satisfies (1) in the sense of distributions, that is

〈∇u,∇ϕ〉 − 〈(ω ∧ x) · ∇u− ω ∧ u, ϕ〉 (8)

+k
〈 ∂u

∂x3
, ϕ

〉
− 〈p,∇ · ϕ〉 = 〈f, ϕ〉,

ϕ ∈ C∞
0 (R3),

where < ., . > denotes the duality pairings.
{u, p} satisfies (8) for all ϕ ∈ Ŵ 1,q/(q−1)(R3).

Theorem 1. Let 1 < q <∞ and suppose

f ∈ Ŵ−1,q(R3)3, (9)

then the problem (1)-(3) possesses a weak solution
{u, p} ∈ Ŵ 1,q(R3)× Lq(R3)

‖∇u‖q + ‖p‖q + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q

≤ C‖f‖−1,q, (10)

with some C > 0, depends on q. The solution is
unique in Ŵ 1,q(R3)3 up to a constant multiple of ω
for u.

3 Proof of the main theorem

We give a sketch of the proof of Theorem 1, for more
details see [KNPe2].
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For a rapidly decreasing functionu ∈ S(Rn) let

Fu(ξ) = û(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξu(x) dx,

with ξ ∈ Rn , be the Fourier transform ofu. Its inverse
is denoted byF−1. Moreover, we define the centered
Hardy-Littlewood maximal operator

Mu(x) = sup
Q3x

1
|Q|

∫
Q
|u(y)| dy, x ∈ Rn,

for u ∈ L1
loc(Rn) whereQ runs through the set of all

cubes centered atx.
Due to the geometry of the problem it is reasonable to
introduce cylindrical coordinates(r, x3, θ) ∈ (0,∞)×
R× [0, 2π). Then the term(ω∧x) ·∇u = −x2∂1u+
x1∂2u may be rewritten in the form

(ω ∧ x) · ∇u = ∂θu

using the angular derivative∂θ applied tou(r, x3, θ).
Now we will solve (1) – (3) explicitly using

Fourier transforms and multiplier operators. Work-
ing first of all formally or in the spaceS ′(Rn) of
tempered distributions we apply the Fourier transform
F = ̂ to (1) – (3). With the Fourier variable
ξ = (ξ1, ξ2, ξ3) ∈ R3 and s = |ξ| we get from (1)
– (3).

(νs2 + ikξ3)û− ∂ϕû+ ω̃e3 × û+ iξp̂ = f̂ ,

iξ · û = 0. (11)

Here (ω × ξ) · ∇ξ = −ξ2∂/∂ξ1 + ξ1∂/∂ξ2 = ∂ϕ

is the angular derivative in Fourier space when using
cylindrical coordinates forξ ∈ Rn. Sinceiξ · û = 0
impliesiξ · (∂ϕû−ω× û) = 0, the unknown pressure
p is given by−|ξ|2p̂ = iξ · f̂ , i.e.,

∇̂p(ξ) = iξ · p̂ =
(ξ · f̂)f̂
|ξ|2

.

Henceu may be considered as a (solenoidal) solution
of the reduced problem

−ν∆u+ k∂3u− ∂θu+ω ∧ u = f in Rn, (12)

where byf we meanf = f −∇p.

Theorem 2. Let 1 < q < ∞ and f ∈ Ŵ−1,q(R3).
Then the equation

Lu ≡ (13)

−∆u+
∂u

∂x3
− (ω ∧ x) · ∇u+ ω ∧ u = f in R3

possesses a weak solution u ∈ Ŵ 1,q(R3) subject to
the estimate

‖∇u‖q,R3 + ‖(ω ∧ x) · ∇u − ω ∧ u‖−1,q,R3

≤ C‖f‖−1,q,R3 , (14)

with some C > 0, depends on q. The solution is
unique in Ŵ 1,q(R3)3 up to a constant multiple of ω
for u.

In Fourier space – using cylindrical coordinates
(s, ϕ, ξ3) ∈ R̄+ × [0, 2π] × R, s =

√
ξ21 + ξ22 , for

ξ = (ξ1, ξ2, ξ3)T as well and note that̂∂ϕu = ∂ϕû,
∂ϕu = (e3 × x) · ∇u andû satisfies the equation

1
ω̃

(ν|ξ|2 + ikξ3)û− ∂ϕû+ e3 ∧ û =
1
ω̃
f̂

with respect toϕ. Denotinĝv(ϕ) = OT
e3

(ϕ)û(s, ϕ, ξ3)
then we are looking for the solution of the following
problem:

1
ω̃

(ν|ξ|2 + ikξ3)v̂ − ∂ϕv̂ =
1
ω̃
OT

e3
(ϕ)f̂ (15)

After some calculation we obtain

û(ξ) ≡ (16)

≡
∫ ∞

0
e−ν|ξ|2tOT

ω (t)(Ff(Oω(t).− kte3))(ξ)dt.

Finally note thate−ν|ξ|2t is the Fourier transform of
the heat kernel

Et(x) =
1

(4πνt)3/2
e−|x|

2/4νt (17)

yielding

u(x) =
∫ ∞

0
Et∗OT

ω (t)f(Oω(t).−kte3)(x)dt. (18)

Note thatF = f−∇p is solenoidal so that the identity
iξ · F̂ = 0 implies that alsou is solenoidal.
An essential step is to show

‖∇u‖q,R3 ≤ C‖G‖q,R3

for the force of the formf = ∇·GwithG ∈ C∞
0 (R3)9

on account of the density property see Lemma 1.

Assumptions I: Let Ω ⊂ RN , N ≥ 2, be a domain
with boundary∂Ω ∈ C1,1 and suppose one of the
following cases
(i) Ω is bounded
(ii) Ω is an exterior domain, i.e. , a domain having a
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compact nonempty complement
(iii) Ω is a perturbed half space, i.e., there exists some
open ballB such thatΩ \B = Rn

+ \B.

For a bounded domainΩ with boundary inC0,1 Bo-
govski [B1], [B2] constructed a bounded linear oper-
atorR : Lq

0(Ω) → W 1,q
0 (Ω)n such thatu = Rg is a

solution of
div u = g in Ω
u = 0 on∂Ω.

(19)

satisfying ‖Rg‖W 1,q(Ω) ≤ c‖g‖q. Additionally R

mapsW 1,q
0 (Ω) ∩ Lq

0(Ω) intoW 2,q
0 , see [W].

Lemma 1. (Farwig, Sohr)
Let Ω = Rn or let Ω ⊂ Rn (n ≥ 2) be a do-
main satisfying Assumption I, further let1 < q <
∞. Then there exists a linear bounded operator
R : W 1,q ∩ Ŵ−1,q(Ω) → D(∆q)n if Ω is unbounded
orR : W 1,q(Ω) ∩ Lq

0(Ω) → D(∆q)n if Ω is bounded
such thatu = Rg is a solution of (2.10) for all
g ∈ W 1,q ∩ Ŵ−1,q(Ω) or g ∈ W 1,q(Ω) ∩ Lq

0(Ω)
respectively;u = Rg satisfies the estimates

‖u‖q ≤ C‖g‖−1,q

and

‖u‖W 2,q ≤ c(‖∇g‖q + ‖g‖−1,q),

wherec = c(Ω, q) > 0 is a constant.

Proof: see [FS].

In our case for allf ∈ Ŵ−1,q(Ω), there isG ∈ Lq(Ω)
such that

∇ ·G = f (20)

‖G‖q,Ω ≤ C‖f‖−1,q,Ω (21)

with someC > 0.
As a result, the space{∇ ·G;G ∈ C∞

0 (Ω)n} is dense
in Ŵ−1,q(Ω).

Let us derive theLq estimate of the operatorT defined
by

TG(x) = ∇u(x) = −
∫

R3 ∇x∇yΓ(x, y) : G(y)dy,

Γ(x, y) =
∫∞
0 EtO

T
w(t)dt,

(22)

The following proposition indicates that fundamental
solution does not define a classical Calderon-Zygmund
integral operator and we need to use Littlewood-Paley
theory.

Proposition 1. There is no constantC > 0 such that

|x− y|Γ(x, y)| ≤ C,∀(x, y) ∈ R3 ×R3.

Proof : see [H] or [FHM].

Remark: We would like to mention very important
property that the termsω ∧ x∇u, ω ∧ u cannot be
estimated separately in general case but only in case
that we require special type of compatibility condition
on thef

1
2π

∫ 2π

0
O(θ)T f(r, x3, θ)dθ = 0 for a.a.r > 0, x3 ∈ R.

For more details see [FHM].
Now, we derive theLq estimate of the operatorT .

∇̂u(ξ) =
=

∫∞
0 ψ̂νt(ξ)OT

ω (t)FG(Oω(t).− kte3)(ξ)dt
t

=
∫∞
0 ψ̂t(ξ)OT

ω/ν(t)FG(Oω/ν(t).− k
ν te3)(ξ),

(23)
where

ψ̂(ξ) =
1

(2π)3/2
|ξ|2e−|ξ|2

and
ψ̂t(ξ) = ψ̂(

√
tξ) for t > 0

are the Fourier transforms of a functionψ ∈ S(R3)
and ofψt(x) = t−3/2ψ(x/

√
t), t > 0, resp.

We defineψ ∈ S(Rn) by its Fourier transform

ψ̂(ξ) = (2π)−n/2|ξ|2e−ν|ξ|2 = ̂(−∆)E1(ξ) (24)

and for allt > 0

ψt(x) = t−n/2ψ( x√
t
),

ψ̂t(ξ) = ψ̂(
√
tξ) = (2π)−n/2t|ξ|2eνt|ξ|2 .

(25)

We define the operator

TG(x) ≡∫ ∞

0
ψt(ξ)OT

ω/ν(t)G(Oω/ν(t).−
k

ν
te3)(ξ)

dt

t
. (26)

To decomposêψt chooseχ̃ ∈ C∞
0 (1

2 , 2) satisfying
0 ≤ χ̃ ≤ 1 and

∞∑
j=−∞

χ̃(2−js) = 1 for all s > 0.
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Then defineχj for ξ ∈ Rn andj ∈ Z by its Fourier
transform

χ̂j(ξ) = χ̃(2−j |ξ|), ξ ∈ Rn,

yielding
∑∞

j=−∞ χ̂j = 1 onRn \ {0} and

suppχ̂j ⊂ A(2j−1, 2j+1) :=

{ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}.
(27)

Usingχj we define forj ∈ Z

ψj =
1

(2π)n/2
χj ∗ ψ (ψ̂j = χ̂j · ψ̂ ). (28)

Obviously,
∑∞

j=−∞ ψj = ψ on Rn. We define the
linear operator

TjG(x) =
=

∫∞
0

∫∞
0 ψ̂νt(ξ)OT

ω (t)FG(Oω/ν(t).− kte3)(ξ)dt
t

=
∫∞
0 ψ̂t(ξ)OT

ω/ν(t)FG(Oω/ν(t).− k
ν te3)(ξ)

dt
t .

(29)
Since formallyT =

∑∞
j=−∞ Tj , we have to prove that

this infinite series converges even in the operator norm
onLq.
For later use we cite the following lemma, see [FHM].

Lemma 2. The functions ψj , ψj
t , j ∈ Z, t > 0, have

the following properties:

(i) suppψ̂j
t ⊂ A

(
2j−1
√

t
, 2j+1
√

t

)
.

(ii) For m > n
2 let h(x) = (1 + |x|2)−m and

ht(x) = t−n/2h( x√
t
), t > 0. Then there exists a con-

stant c > 0 independent of j ∈ Z such that

|ψj(x)| ≤ c2−2|j| h2−2j (x), x ∈ Rn,

‖ψj‖1 ≤ c2−2|j| .

Proof: see [FHM].

To introduce a Littlewood-Paley decomposition ofLq

chooseϕ̃ ∈ C∞
0 (1

2 , 2) such that0 ≤ ϕ̃ ≤ 1 and∫ ∞

0
ϕ̃(s)2

ds

s
=

1
2
.

Then defineϕ ∈ S(Rn) by its Fourier transform
ϕ̂(ξ) = ϕ̃(|ξ|) yielding for everys > 0

ϕ̂s(ξ) = ϕ̃(
√
s|ξ|), suppϕ̂s ⊂ A(

1
2
√
s
,

2√
s
)

(30)
and the normalization

∫∞
0 ϕ̂s(ξ)2 ds

s = 1 for all ξ ∈
Rn \ {0}.

Theorem 3. Let 1 < q <∞. Then there are constants
c1, c2 > 0 depending on q and ϕ such that for all f ∈
Lq

c1‖f‖q ≤
∥∥∥∥( ∫ ∞

0
|ϕs ∗ f(·)|2 ds

s

)1/2
∥∥∥∥

q

≤ c2‖f‖q

where ϕs ∈ S(Rn) is defined by (30).

Proof: See [St1],[St2].

As a preliminary version of Theorem 2 we prove the
following proposition.
Proposition 1. Let j ∈ Z. The linear operator T
defined by 26 satisfies the estimate

‖TjG‖q ≤ c‖G‖q for all G ∈ Lq, q ∈ (2,∞)
(31)

with a constant c = c(q) > 0 independent of f .

Proof: see [KNPe2].

ThenT =
∑∞

j=−∞ Tj converges in the operator norm
on Lq and‖TG‖q ≤ c‖G‖q, for everyG ∈ S(R3)3
andq > 2.
To prove (32) forq ∈ (1, 2) we use a standard duality
argument. The adjoint operatorT ∗ is given by

T ∗G(x) =

=
∫ ∞

0
(ψt ∗Oω/ν(t)G)(OT

ω/ν(t)x+
k

ν
te3)

dt

t
, (32)

with g ∈ S(R3)3.
The same argument as above implies thatT ∗ is

also a bounded operator onLq/(q−1)(R3)9, it implies
thatT is bounded for1 < q < 2. Forq = 2 we apply
Plancherel theorem.
This imply that we proved the following estimate

‖∇u‖q ≤ ‖G‖q. (33)

Now, using Farwig- Sohr lemma (Lemma 1) we know
that there isG ∈ Lq(R3)9 such that

∇ ·G = f, ‖G‖q,R3 ≤ C‖f‖−1,q,R3 .

This implies the statement of Theorem 2.
It remains to prove the uniqueness. We use the duality
method. We consider the adjoint equation

L∗v ≡

−∆v − ∂u

∂x3
+ (ω ∧ x) · ∇v − ω ∧ v +

∂u

∂x3
= ∇ · F (34)
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with F ∈ C∞
0 (R3)9. This admits the solution

v̂(ξ) =
∫ ∞

0
e−ν|ξ|2tOω(t)(Ff(OT

ω (t).−kte3))(ξ)dt.
(35)

Applying the same argument we get

‖∇v‖r,R3 ≤ C‖F‖r,R3 , for all v ∈ Ŵ 1,r(R3), (36)

r ∈ (1,∞).

Let u ∈ Ŵ 1,q(R3)3 be a weak solution ofLu =
0 in Ŵ 1,q(R3)3. One can take as a test function to
get

< Lu, v >= 0.

Similarly, one takesu as a test function for (35) in
Ŵ−1,q/(q−1)(R3)3 to obtain

< u,L∗v > = < u,∇ · F > .

Therefore,
< u,∇ · F >= 0.

SinceF ∈ (C∞
0 )9 is arbitrary, we obtainu = 0 in

Ŵ 1,q(R3)3 by Theorem 2.u is a constant vector, but
it is a constant multiple ofω becauseω ∧ u = 0.
To complete the proof of Theorem 1, we have to show
the following lemma

Lemma 3. Let v ∈ S(R3) be the solution of

−∆v +
∂v

∂x3
− (ω ∧ x) · ∇v = 0 in R3.

Then supp ŵ ⊂ {0}.

Proof: This was proved in [Fa2].

Proof of Theorem 1: As we explain before the terms
ω∧x)×∇u−ω∧u are divergence free. The pressure
is formally obtained from the problem

p = −∇ · (−∆)−1f.

Since(−∆)−1 can be justified as a bounded operator
from Ŵ−1,q(R3) to Ŵ 1,q(R3) we get

‖∇p‖q ≤ c‖f‖−1,q,

which implies that

‖f −∇p‖−1,q ≤ c‖f‖−1,q.

This completes the proof of Theorem 1.
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