
Numerical solution of salt-dome by network method 
 

1SOTO MECA, A., 1ALHAMA, F., 2ALHAMA, I. and 1GONZÁLEZ FERNÁNDEZ, C.F. 
1Department of Applied Physics. Escuela Técnica Superior de Ingeniería Industrial 

2Graduate Student 
Universidad Politécnica de Cartagena, Campus Muralla del Mar,  

30 202 Cartagena, SPAIN 
 
 
 

Abstract: - The salt-dome problem is numerically simulated by a network model whose design is based on the 
network simulation method (NSM). Streamfunction formulation is used and Boussinesq approach is assumed. 
The proposed model simultaneously provides the streamfunction and solute concentration variables with 
relatively low computing times in an ordinary PC. Mathematical manipulations inherent to this type of problem 
are not required with the network method since this work is done by the algorithms implemented in the 
simulation code. 
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1   Introduction 
 
 
 

When the transport of solute does not affect fluid 
density, fluid and transport phenomena are not 
coupled and the problem is relatively easy to solve, 
but there are many cases in which fluid density is 
dependent upon concentration, as occurs, for 
example, in water flows near salt domes and for sea 
water intrusion. In these cases, the problem of solute 
transport is much more difficult to solve because it is 
highly nonlinear. Salt water affects fluid density 
which, in turn, affects the local velocity field.  
Transport simulation for solute involves a variety of 
complex processes that interact with oneanother: 
advection, diffusion, dispersion and, sometimes, 
sorption and decay [1]. Numerical techniques must be 
resorted to especially as long periods of time 
involved.  
The case of groundwater flow in geological 
formations overlying a salt dome has taken on special 
interest since salt formations have been considered 
from the disposal of hazardous waste in some 
countries –USA, Germany, Russia, Spain and others 
[2].  
A salt dome is a geological formation in the 
subsurface in which incompressible salt of high 
plasticity rises (because of the geothermal gradients 
or other heat sources) through sediment layers 
towards the surface of the earth, forming a typical 
dome.  
Numerical codes that use different approximation 
methods (FD, FE and integral finite differences), 

different time discretizations (predictor-corrector, 
semi implicit and fully implicit) and different 
coupling processes have been developed by many 
authors. Some of these codes are SWIFT [3], SUTRA 
[4] and FEFLOW [5]. Sometimes the results obtained 
by different codes can be contradictory [5]. Herbert et 
al. [6], Oldenburg and Pruess [7], and Johns and 
Rivera [8] studied the salt dome problem in the last 
decade. 
An example of idealized flow over the salt dome is 
Case 5, Level 1 of the International HYDROCOIN 
ground water flow modeling project [9], a workshop 
organized by the Swedish Nuclear Power 
Inspectorate (SKI) with the objective of re-evaluating 
the procedures, assumptions and results of this 
benchmark case which is, however, far from the 
complexity of many actual problems.  
The mathematical model is defined in terms of the 
stream function, an option also chosen by other 
authors. The code we use to simulate this problem is 
based on the network simulation method (NSM) [10]. 
A network model is designed from the finite 
difference differential equations that result from the 
spatial discretization of the partial differential 
equations (like in the known Lines Method). NSM, 
which has been successfully used for numerical 
simulation of other types of nonlinear problem makes 
use of the powerful capabilities of modern circuit 
simulation computer codes which use the more 
complex algorithms of calculus.  
Since two dependent variables exist, two independent 
(electrically isolated) circuits form the model. Each 
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3   The network model term of the discretized equations, whatever be its 
expression, is implemented in the model by a unique 
device: a resistor, a capacitor or a controlled current 
source, so that the design of the model is quite easy 
since very few terms form the equation. In addition, 
water and salt balances are assumed by the simulation 
code because these balances are the theorems of 
Kirchhoff (current Kirchhoff law).  

 
 

The steps for designing the network model are also 
discussed in the reference Soto et al. mentioned in the 
above section. More details about the design rules 
may be found in González Fernández et al. [10]. 
Figure 1 shows the network model of the volume 
element. Two independent networks make up the 
model, one related to the water flow problem, eq. (7), 
and the other related to solute transport, eq. (8). The 
coupled terms of these equations are implemented in 
the model by the current sources called “G” in the 
figure. These devices are able to provide a flow 
variable that can be defined by software and can be 
depend on the potential variables (concentration and 
streamfunction.  

Finally, boundary conditions are also easily 
implemented [10]. Pspice [11] is the code used for 
the simulation. 
 
 
2   The governing equations 
 
 

The 2-D coupled equations that define the 
mathematical model are those of the problem of 
density-driven flow and solute transport through 
porous media, already discussed in the 
communication of Soto et al. presented to this 
conference [12]. They are formulated in terms of the 
streamfunction, ψ, and assuming the Boussisnesq 
approach ρ ≅ ρo. Streamfunction is defined as ∂ψ/∂x 
= qy and ∂ψ/∂y = -qx, where q (m/s) is the specific 
discharge.  

 
 

Defining the dimensionless variables  
 
x´= x/H      (1) 
 
 

z´= z/H      (2)  
 
 

t´= t(D/H2)     (3) 
 
 

qx´ = qx(H/D)     (4) 
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qy´ = qy(H/D)     (5) 
 

 
 

ψ´= ψ/D     (6) 
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the resulting equations are: 
 
(∂2ψ´/∂x´2) + (∂2ψ´/∂y´2) = Ra (∂c´/∂x´)  (8)  
 
 
 
 

(∂2c´/∂x´2) + (∂2c´/∂y´2) - (∂ψ´/∂x´)(∂c´/∂y´) +  
  +(∂ψ´/∂y´)(∂c´/∂x´) = (∂c´/∂t´)  (9) 
 
with Ra the Rayleigh number, Ra = κ ∆ρ g H/(Dµ). 
In these equations µ (Nm-2s) is the fluid viscosity, k 
(m2) the permeability of the porous medium, g (m2s-1) 
the gravitational acceleration, ρ  (kg/m3) the flow 
density, ε (dimensionless) the porosity c (kg/m3) the 
salt concentration and D (m2s-1) the diffusivity. x (m), 
z (m) and t (s) are the independent variables space 
and time.  

 
Figure 1. Network model of the volume element. 

a) streamfunction variable,  
b) saltwater concentration variable 
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4   Application. The salt dome problem   ∂ψ /́∂y´= - v́ o,x, 

  aquifer 

 ć = ́ 0 

 ∂ć /∂x́= 0 
 ψ´= ψ ó 

 ∂ć /∂x́= 0 
 ψ´= ψ ó 

 ∂ć /∂y´= 0 
 ψ´= ψ ó 

 ∂ć /∂y´= 0 
 ψ´= ψ ó 

 ∂ć /∂y´= 0 
 ψ´= ψ ó 

 Figure 2. Schematic view and boundary conditions 

 
 

Parameters of the problem are: 
 
H´= 1 (height of the aquifer, dimensionless) 
L´ = 3 (length of the aquifer) 
Ra = 1176.6 (Rayleigh number) 
v´o,x = - 33.3 (prescribed horizontal velocity) 
ψ´o = 0 
 
while the boundary and initial conditions are:  
 
ψ´= ψ´o, ∂c´/∂y´= 0, 0<x´<1, y´= 0  (10) 
ψ´= ψ´o, c´= 1, 1<x´<2, y´= 0   (11) 

 ψ´= ψ´o, ∂c´/∂y´= 0, 2<x´<3, y´= 0  (12) 
 ψ´= ψ´o, ∂c´/∂x´= 0, x´= 0 and x´= 3  (13) 

∂ψ´/∂y´= - v´o,x, c´= 0, y´= 1   (14) 
c´ = 0, t´= 0     (15) 

An auxiliary C# program has been designed to import 
the tabulated data (output file) of Pspice code and to 
represent them in MATLAB.  
Figures 3 and 4 shows the values of ψ´and c´, 
respectively, for a dimensionless time t´= 0.05, which 
is far from the steady time. Rayleigh number is 
1176.6. Two eddies are formed in the bottom part of 
the aquifer (figure 3) turning in opposite directions. 
Most of solute is distributed at the lower region of the 
aquifer. 

These conditions are sketched in Figure 2. On the one 
hand, the constant value of ψ´ (Diritchlet) is 
implemented by a constant voltage source connected 
to the extreme of the volume elements in the network 
of the flow, while the condition ∂ψ´/∂y´= - v´o,x 
(Neumann) is implemented by a current source. On 
the other hand, the constant value of c´ is also 
implemented by a constant voltage while the 
condition ∂c´/∂x´= 0 is implemented by a resistor of 
very high value to prevent the flow salt.  

For a dimensionless time t´= 0.1, Figure 5 and 6 
shows these same variables. We also see, for this 
time, recirculation in the lower region that transports 
the dense brine throughout the entire lower portion of 
the domain. These results also appears in the solution 
of other authors [6-7]. 

The total number of volume elements used is 800, 40 
horizontal and 20 vertical. A relatively low number in 
order to diminish the computing time necessary. 
 

 
 

Figura 3. Unsteady streamfunction (dimensionless). t´ = 0.05 
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Figura 4. Unsteady solute concentration (dimensionless). t´ = 0.05 
 

 
 

Figura 5. Unsteady streamfunction (dimensionless). t´ = 0.1 
 

 
 

Figura 6. Unsteady solute concentration (dimensionless). t´ = 0.1 
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Streamfunction has a similar aspect for both times 
although the numerical values are different, 
particularly in the upper region. The salt 
concentration curves are, however, different since salt 
rises with time.  
The computing times are in the order of 140 s in an 
ordinary PC. 
 
 
2 Conclusions 
 
 

The salt dome problem has been numerically 
simulated by a network model in a circuit simulation 
code (Pspice). Two independent circuits in each 
volume element are implemented, one for the fluid 
flow variable and one for the salt concentration 
variable. Simultaneous solution for both variables is 
provided by the code in tabulated and graphic form 
without the complex mathematical manipulations 
inherent in this type of coupled problem. The 
coupling between equations is carried out by a 
current source whose output is easily defined by 
software. Computing times are relatively short in a 
PC. 
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