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Abstract:- Certain aspects referring to the energy consumptions in the servo drive system with D.C. motors are 
presented. The possibilities of the decrease of the energy losses are emphasized; these possibilities appear 
especially in the transient period of the speed change. A simple structure for suboptimal control is proposed. 
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1   Introduction 
There is nowadays an increased interest for energy 
saving and different methods and procedures are 
proposed for this purpose. One of the means of the 
achieving this goal is the optimal control [1], [2] of 
the drive and servo drive systems. Tacking into 
account that the more than 60% of the produced 
electrical energy is consumed by drive systems, this 
method is very important in order to ensure the 
reducing of the energy consumption. Unfortunately, 
the number of applications of the optimal control of 
electrical drives is very small and we appreciate that 
this is caused by the algorithm complexity. 
However, the methods proposed by authors [3], [4] 
allow to carry out an easy implementation and 
therefore, it is useful to apply the optimal control, 
since the diminution of the energy losses in the 
motor windings is up to 25…30% in the 
electromechanical transient process, by comparison 
with classical cascade control. These aspects are 
also interested for servo drive systems, tacking into 
account that they work very much time in transient 
state. 
 The aim of this paper is to present some 
energetic aspects regarding the electromechanical 
transient process of the electrical servo systems and 
to emphasize the great possibilities of the reducing 
energy consumption in this case. There are many 
papers and books which present the energy 
consumption of the electrical servo drives and their 
optimal control, but we consider that it is not 
sufficient underlined the possibilities of the energy 
losses decrease. 
 Since the goal is to emphasize the general 
energetic aspects and not an exact computing of the 
energy components, a simplified model will be 
considered. Mainly, the electromagnetic transient 

processes are neglected and therefore, the rotor 
current is adopted as control variable. 
 Starting from the results obtained on this basis, a 
simple structure for suboptimal control is proposed. 
 The main conclusions of this paper are valid for 
different types of the drive motors. For simplicity 
only the D.C. motors case is presented. A similar 
study for an electrical drive system was presented in 
[5]. 
 
2   Energy Consumptions 
We shall consider the following model for an 
electrical servo drive system with a D.C. motor [6]: 

(t) r (t)θ = ω  

e
di(t)u(t) Ri(t) L c (t)

dt
= + + ω  (1) 

mc i(t) J (t) m(t)= ω + ,  

where u(t) and i(t) are the rotor voltage and current, 
respectively, ω(t) is the rotor speed, m(t) is the load 
torque, R and L are the rotor winding resistance and 
inductance, respectively, J is the inertia, and ce, cm 
are motor parameters and r is the gear constant. We 
suppose that m(t) = constant on the interval [0,T] of 
the tracking process. Also, for simplification, we 
shall suppose that the electromagnetic transient 
process can be neglected (L=0). In this case, the 
current may be considered as an control variable. 
The simplified model of the servo system is 

(t) r (t)θ = ω  (2) 

mc 1(t) i(t) m(t)
J J

ω = −  (3) 

 The energy losses in the rotor winding on the 
interval [0,T] are 
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T 2
0

E R i (t)dt= ∫  (4) 

 The current i(t) can be expressed from (3)  

0 si(t) i (t) i (t)= +  (5) 

where 

0
m

Ji (t) (t)
c

= ω  (6) 

is the component which imposes the acceleration for 
the non load operation and 

s mi (t) m(t) / c=  (7) 

is the component established by the load torque. 
 Corresponding to these components, the energy 
loss is 

T T T2
0 00 0 0

2
s sE R i (t)dt R i i (t)dt R i (t)dt= + +∫ ∫ ∫  (8) 

 If m = constant, is = constant, the last integral has 
the value 2 2

msE RTm / c=  and the second integral is 

T T
S 0 S0 0

m

S
m

JRi i (t)dt R i (t)dt
c

JR i [ (t) (0)]
c

= ω =

= ω − ω

∫ ∫
 (9) 

 The integral (9) has a fixed value for imposed 
terminal conditions (ω(0) and ω(T)). If ω(0) = ω(T) 
=0 (this situation frequently appears in the servo 
drive applications), 

T
00

i (t)dt 0=∫  (10) 

 Since the last two terms in (8) have imposed 
values for the imposed operating conditions, only 
the first integral in (9) can be modified by means of 
an adequate control. Therefore, in the sequel we 
shall consider especially this component and we 
shall denote in these cases i= i0 and E = E0. 
 Note also that (10) indicates the mean values of 
the current for no-load system in the accelerating 
and decelerating period are equal, but with inverse 
sign. 
 
3   Optimal Control 
In order to obtain a good behaviour of the system 
and reduced energy consumption, it is 
recommended to adopt an optimal control, using a 
quadratic criterion 

T
2 21

d 1 d
0

2 2 2
2 d 3

s 1I [ (T)] [q ( (t))
2 2

q ( (t)) q i (t) pu (t)
ru(t)i(t)]dt

= θ − θ + θ − θ +

+ ω − ω + + +

+

∫

 (11) 

 The criterion (11) is used in the problems with 
free end-point. The first term penalizes the 
difference between the desired values, θd and the 
final values θ(T). The first two terms in integral 
penalize the mean transient error of the angular 
displacement and of the speed and the third one 
refers to the energy losses. The next term penalizes 
the great value of the control variable u(t) and the 
last one refers to the global energy consumption. In 
the problems with fixed end-point, s1 = 0 and it is 
imposed to achieve θ (T)= θ f. 
 Since our goal is to study the energetic aspects of 
the drive system control, we shall consider only the 
criteria in the form 

T
2

J
0

I E Ri (t)dt= = ∫  (12) 

or 
T

T
0

I i(t)u(t)dt= ∫  (13) 

 Note that the optimal control is equivalent in the 
both mentioned cases if the load torque m is 
constant (this property is proved in [5] for an 
electrical drive system), so that only the criterion 
(12) will be considered below. 

 The optimal control problem refers to the 
criterion (12) and the system (2), (3), with imposed 
terminal states ω(0), ω(T) and θ (T)= θ. 
 Since the initial and final conditions have not a 
major significance in the linear systems case, we 
shall consider the simplest conditions θ(0) = 0, ω(0) 
= ω(T) = 0. 
 The Hamiltonian [1] of the problem is 

2
1 2 m

1H Ri (t) (t)r (t) (c i(t) m)
J

= + λ ω + λ −  

(λ1 and λ2 are the costate variables).  
From the necessary conditions 

 1 2H / i 0, H / , H /∂ ∂ = ∂ ∂θ = −λ ∂ ∂ω = −λ , 

One obtain the optimal current  

* f
2

m m

J t mi (t) 6 (1 2 )
rc T cT

θ
= − + , (14) 
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where θf is the final imposed value of the angular 
displacement, and the corresponding optimal state 
variables 

2
f
2

t(t) 6 (t )
TrT

θ
ω = −  (15) 

3
2f

2
t(t) (3t 2 )
TT

θ
θ = − ,   with θ(T) = θf. (16) 

The minimum energy losses are from (12) and (14) 
22

* * f
J 2 2 3

m

JE I 12
rC r T

θ
= =  (17) 

 In servo applications fθ  is imposed and we can 
diminish *

JI  by increase the transfer duration T, but 
a very long time is not acceptable in many cases. 
 From (14) and (15) we can compute the 
maximum values 

f
M 2

m m

f
M 2

f
M

6 J mi i(0) ;
C CrT

6(0) ;
rT

3T .
2 rT

θ
= = +

θ
ε = ω =

θ⎛ ⎞ω = ω =⎜ ⎟
⎝ ⎠

 (18) 

 Also, we can define the mean values 

f M f
m M m 2

31 , .
rT 3 T / 2 rT
θ ω θ

ω = = ω ε = =  (19) 

 The mean or maximum value for speed and/or 
acceleration is imposed in certain applications. In 
this case, the duration T can be established for a 
given fθ . The minimum value of the energy loss 
can be then expressed 

2 2
*
J M M m m2 2

m m

2 J JI 4
3 C C

= ω ε = ω ε . (20) 

 Of course, if the speed and/or acceleration are 
restricted to the admissible values aω  and aε , 
respectively, the control current (14) will be 
modified in the period 1 2[t , t ] [0,T]∈  when the limit 
values aω  or aε  are achieved. A limit value for 
current will be adapted in this case, for instance 

a a m mi J / C m / C= ε + . (21) 

 If the emitted heat (17) in the period [0,T] 
overcome the admissible one, a motor with a bigger 
rated power must be adopted. But, if the motor is 
adopted in a first design step (usually from the heat 
conditions) considering a certain control law, a 

decrease of the emitted heat is obtained if the 
optimal control is preferred. Moreover, the reducing 
of the energy losses allows in many cases to adopt a 
motor with a smaller rated power. 
 By this way, the optimal control ensures not only 
the energy saving but allows to reduce the cost, 
weigh and volume. Note that in certain applications 
the decrease of weight of sub- ensemble leads to the 
diminish of the energy consumption of the all plant. 
 Non optimal control (in the sense of criterion 
(12)) leads to greater energy losses. The difference 
between the losses depends on the difference 

*i(t) i(t) i (t)δ = −  (22) 

between the non optimal and optimal current.  
 One can prove that the energy losses for non-
optimal control are 
 

T* 2
0

E E ( i) dt= + δ∫  (23) 

and this expression can be asserted by the following  

Application: We shall consider that the control 
variable has only two values: 

1 1

2 1

i(t) i 0, t [0, t ] and
i(t) i 0, t [t ,T].

= > ∈
= < ∈

 (24) 

 For m = 0, m(t) (C / J)i(t)ω =  and we find 

m
1 1

C(t) (t) i t
J

ω = ω =  for 1(0) 0, t [0, t ]ω = ∈   

and 

[ ]m
2 2 1 2 1

2 1 1 1

C(t) (t) t (i i )t ,
J

for (t ) (t), t [t ,T]

ω = ω = ε + −

ω = ω ∈
   

 The condition 2 ( ) 0ω τ =  leads to 

1
2 1

1

ti i
T t

= −
−

 (25) 

Further 
2

m 1
1 1 1 1

C t(t) (t) i ,for (0) 0, t [0, t ]
J 2

θ = θ = θ = ∈   

and, having in view (25), 

2m 1
2 1 1

1

2 1 1 1 1

C t(t) (t) i ( t 2Tt Tt ),
J 2(T T )

for (t ) (t ), t [t ,T].

θ = θ = − + −
−

θ = θ ∈

  

Proceedings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, Chalkida, Greece, May 8-10, 2006 (pp55-60)



 From the condition 2 f(T)θ = θ  and using (25), 
we obtain the necessary values for the control 
variable in order to achieve the final condition 

f f
1 2

m 1 m 1

2J 2Ji , i
C Tt C T(T t )

θ θ
= = −

−
 (26) 

 The energy losses are 
2

2 2 f
n 1 1 2 1 2 2

1 1n

4J TE R i t i (T t
t (T t )C T

θ⎡ ⎤= + − =⎣ ⎦ −
 (27) 

 One can easy to remark that En has a minimum 
value for 1t T / 2=  (the periods for acceleration and 
deceleration are equal), when 

22
f f

1 2 n2 2 3
m m

4J Ji i and E 16
C T C T

θ θ
= − = =  (28) 

 It is well known [1] that (28) is the solution for 
the minimum time control problem for the given 
system and for the imposed maximum value for 
i(t) . It comes out that the final conditions can be 

reached in the same time T with greater energy 
losses by comparison with optimal control from 
energetic point of view (17). Although the control 
current (14) has a maximum value greater than (28), 
the quadratic mean value is smaller and this fact 
ensures a smaller energy loss. 
 The difference between control current (28) and 
optimal control (14) is 

f
2

m

2 J 6ti(t) 1
C TT

θ ⎛ ⎞δ = −⎜ ⎟
⎝ ⎠

 

 Tacking into account the symmetry of the control 
for  t < T/2 and t > T/2, the corresponding difference 
(23) of energy consumptions is 

T 22
* 2 f2

n 2 30
m

JE E 2 ( i) dt 4
C T

θ
− = δ =∫  (29) 

 Obvious, this value is in concordance with (17) 
and (28). 
 A comparison with other non optimal control law 
(e.g. – a linear feedback control) can be also 
performed, but the expressions are more 
complicated. Note that in each case the energy 
losses provided by the no-load component of the 
current is in the form 

22
f

2 3
m

JE , 12
C T

θ
= α α ≥ . 

 For analyzed non optimal control, α = 16 and the 
losses increase with 33% by comparison with 
optimal control. 

 Remark: The above established current i*(t) is an 
ideal optimal control, since we have supposed that 
the current can be instantaneous modified. The real 
optimal control, such it is established in [3], [4], 
introduces a supplementary value of energy losses, 
depending on the difference between the ideal and 
non ideal optimal control (see (27)). 
 
 
4 Optimal control implementation 
and simulation results. 
The results were simulated for a servo drive system 
with a d.c. motor with following data: Un=110 V, 
In=3.3 A, R=3,1Ω, L=0.16 H, Ce=0.58 Vs/rad, 

Cm=0.58 Nm/A, J=0.028 Nms2/rad. 

 The optimal system behaviour (corresponding to 
equations (14), (15), (16))  is indicated in Fig. 1 (for 
m = 0) and Fig. 2 (for m = 0.78 Nm). 
 The energy consumptions are indicated on the 
figures. 
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 This optimal control was established above in 
certain idealized suppositions. A more realistic 
study implies to consider the system (1) and the 
criterion (11). This problem is solved in [3], [7]  for 
free and fixed end point cases; the proposed 
procedures ensure a simpler implementable 
feedback solution by comparison with classical 
methods. The Fig.3 and 4 present the behaviour of 
such an optimal system for the fixed end-point case, 
for m = 0 and m = 0.78 Nm, respectively. 
 We can remark that the variables have similar 
variations as the ideal case (Fig. 2 and 3). Of course, 
the current has not a step variation at the initial 
moment and the energy losses are bigger (with 
about 11%) then in the ideal optimal case. 
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Fig. 4 

 The obtained equations for optimal current and 
speed suggest a very easy way for implementation 
of the optimal control. 
 A first possibility is to impose for the current the 
variation given by (14). The drawback is the 
dependence on the load torque m and this fact 
implies to estimate the torque at the beginning of the 
optimal process. 
 A simpler way is to impose the variation of 
speed in concordance with (15). The structure of 

this system is indicated in the fig. 5, where *ω  is the 
prescribed variation for speed (15), C is the 
controller and M is the motor. 

 
Fig. 5 

 Different type of controllers (C) can be chosen - 
for instance a predictive controller, an optimal one 
(in accordance with a criterion depending an Δω). 
The performed tests have indicated that a simple PI 
controller ensures a good concordance between ω 
and ω*, as it is indicated in the Fig. 6and 7 for m = 
0 and m = 0.78 Nm, respectively. 
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Fig. 7 

 The desired variations ω*(t) is not presented on 
these figures because they are almost the same as 
ω(t) 
 The system implemented by this way is 
suboptimal, but the difference between this system 
and an optimal one is very small. 
 On the other hand, the implementation is simple 
by comparison with other solution for optimal 
control. Of course, it is useful to carry out a closed 

C M ∫ ω*   + Δω i ω θ 

- 
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loop system, using a supplementary angular 
displacement feedback. 
 
5   Conclusions 
An optimal control problem referring to an electrical 
servo drive version is studied. This case is 
approached as a linear quadratic optimal problem. 
 The winding energy losses represent a great 
amount of the total energy consumption of the servo 
drive system with D.C. motor in the transient 
process. 
 A suitable control of the rotor current leads to a 
significant decrease of the energy losses. 
 A simple suboptimal algorithm is presented and 
a comparison with the optimal solution is 
performed. 
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