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Abstract: The aim of this paper is to present a possible approach to modeling the influence of clot formation on
blood flow in a vessel. The modeling framework adopted in this work is based on a modification of the fluid vis-
cosity within the clot area. A non-Newtonian blood flow model in a three-dimensional straight vessel is considered
and its numerical solution is obtained using a finite-volume method. Finally, a qualitative analysis of the results is
presented together with some guidelines for future coupling with a biochemical model.
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1 Introduction

Blood coagulation is one of the basic defense mecha-
nisms preventing the loss of blood following a vascu-
lar injury. When the endothelium is damaged, blood
platelets get activated and a complex sequence of
chemical reactions occurs at the site of trauma. Ac-
tivation of the coagulation cascade is triggered by the
release of tissue factor from the site of injury and re-
sults in the generation of thrombin. Thrombin con-
verts soluble fibrinogen into the insoluble fibrin that
forms the matrix of a blood clot.

This is a very rough description of the biochem-
ical processes leading to clot formation. A more de-
tailed description is beyond the scope of this paper
and the reader is referred to the literature on the sub-
ject. The essential information to understand the ap-
proach adopted in this work can be found in the re-
view paper [1] which includes an extensive bibliogra-
phy on the subject. Thus, only a few references will
be given here. The basic phenomenology of blood co-
agulation is described e.g. in [4], [10] or [6]. Many
mathematical models of blood coagulation processes
have been developed so far. In the context of this work
the most important references are [14], [15] which in-
clude a simple 8-equation model for the intrinsic co-
agulation pathway simulation. Some more complex
models including extrinsic tissue-factor coagulation
pathway have been developed in [7], [5], [13], [8].

Once the clot is formed, it acts as a mechanical
obstacle in blood flow. The clot is built from the blood
constituents, however it has significantly different ma-
terial properties. The mechanical model of clot used

here is based on the assumption that both blood and
clot are incompressible viscous (or possibly viscoelas-
tic) fluids. In this case the same mathematical descrip-
tion can be used for both fluids, while a model param-
eter set is used for blood and a distinct one for clot.
We assume that the clot has significantly higher vis-
cosity than blood. This approach was proposed in [2]
using a shear-thinning viscoelastic model and also in
combination with biochemistry in [1].

2 Governing Equations

Blood is a complex fluid which in large and medium
vessels can be modeled as a Newtonian liquid. How-
ever, in smaller vessels, with diameters comparable
with those of the cells, blood behaves as a shear-
thinning and viscoelastic fluid (see section 2.4 for
more details). In this work we consider the simple
case where blood is modeled as a generalized Newto-
nian fluid with shear-thinning viscosity.

2.1 Basic balance laws

Mass and momentum balance laws for an incompress-
ible viscous fluid can be written in the following gen-
eral form:

div u = 0 (1)

ρ
du

dt
= divT − ∇p + ρb (2)

whereu is the velocity field,p is the pressure,ρ is the
(constant) density andT is the Cauchy stress tensor.
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2.2 Constitutive equations

To be able to solve this system a constitutive law for
the stress tensorT should be specified. Different
choices could be made at this stage to take into ac-
count the specific fluid behavior. The commonly used
constitutive models are the following:

1. Navier-Stokes(Newtonian fluids)

T = 2µD (3)

HereD represents the symmetric part of velocity
gradient andµ denotes the dynamical viscosity.
Introducing (3) into the momentum balance (2)
leads to the well known classical Navier-Stokes
system.

2. Maxwell fluids

T + λ
δT

δt
= 2µD (4)

This model is considered as the first approach to
the viscoelastic fluid behavior. The ratio between
viscous and elastic coefficients is hidden in the
parameterλ. This parameter has the dimension
of time and is usually referred asrelaxation time.
The symbolδ·

δt
stands for the so–calledconvected

derivative, which is an objective time-derivative
(see section 2.3 for details).

3. Oldroyd type fluids
Combining the previous two models the behavior
of incompressible viscous and viscoelastic fluids
can be described. In this case the constitutive
equation will take the form:

T + λ1
δT

δt
= 2µ

(

D + λ2
δD

δt

)

(5)

It is possible to show that this model contains the
former two models as special cases, for certain
choices ofλ1 andλ2.

2.3 Convected derivative

To guarantee that the model is objective, i.e. invariant
to Galilean transform, the convected derivative should
be used instead of the material time-derivative, but this
is not the only possibility. The general expression for
the convected derivative of a tensorM is the follow-
ing:
(

δM

δt

)

abc

= Ṁ − WM + MW + a(DM + MD)

+ b(D : M)I + c(D trM) (6)

In this expressiona, b andc are real parameters, and
thus we have three-parametric family of convected
derivatives. Such a general form of convected deriva-
tive leeds to so called Oldroyd 8-constant model (see.
[11], [12] or [3]). Usually the choice of a convected
derivative is reduced to cases whereb = 0 andc = 0.
This corresponds to some frequently used derivatives
listed in the Table 1 below:

Name Definition a

Lower-convected
△

M= Ṁ + L
T
M + ML 1

Upper-convected
▽

M= Ṁ − LM − ML
T −1

Co-rotational
◦

M= Ṁ − WM + MW 0

Table 1: Commonly use convected derivatives

The one-parametric family of convected derivatives
can be then written as:
(

δM

δt

)

a

= Ṁ−WM+MW + a(DM+MD) (7)

This is sometimes referred as the Gordon-Schowalter
derivative with parametera = ξ − 1, a ∈ 〈−1; 1〉
whereξ is calledslip parameter.

2.4 Shear-thinning viscosity

One of the generally accepted properties of blood
flow is its shear-thinning behavior, which is mainly
due to aggregation and deformability of erythrocytes
(RBCs). In particular, at rest or at low shear rates,
blood seems to have a high apparent viscosity (due to
RBCs aggregation into clusters called rouleaux) while
at high shear rates the cells become disaggregated
and deform into an infinite variety of shapes without
changing volume (deformability of RBCs), resulting
in a reduction in the blood Rs viscosity. Moreover
blood cells are essentially elastic membranes filled
with a fluid and it seems reasonable, at least under
certain flow conditions, to expect blood to behave like
a viscoelastic fluid.

If blood flow is modeled by a viscoelastic consti-
tutive law that does not predict the shear-thinning be-
havior, then a specific viscosity formula respecting the
shear-thinning property of blood needs to be included.
Several formulas have been used in blood flow sim-
ulations and calibrated with parameters obtained by
curve fitting with experimental data. A general vis-
cosity function can be written as follows:

µ(γ̇) = µ∞ + (µ0 − µ∞)F (γ̇). (8)

Hereµ0 andµ∞ are the asymptotic viscosity values
for low and high shear rates, respectively. The appro-
priate transition between these values is carried out by
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the shear-rate dependent functionF (γ̇). This function
should satisfy the following natural limit conditions:

lim
γ̇→0+

F (γ̇) = 1 lim
γ̇→∞

F (γ̇) = 0

There are many possible choices for such a function
F (γ̇). One of the most frequently used is the general-
izedCrossformula included in the following model

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)
a (9)

with parameters obtained by calibration against suit-
able experimental data. The following parameters
have been used for blood flow simulations with this
model in [9]:

µ0 = 1.6 · 10−1Pa · s µ∞ = 3.6 · 10−3Pa · s
a = 1.23, b = 0.64s λ = 8.2s

A Cross model can be used to generalize Newtonian,
Maxwell or Oldroyd type constitutive laws, replac-
ing the original constant viscosityµ by the shear-
dependent viscosityµ(γ̇). In the present work we con-
sider the generalized Navier-Stokes equations with a
shear-thinning Cross viscosity of this type to model
blood flow.

2.5 Clot model

The external blood coagulation pathway is triggered
by contact of blood with the subendothelium layer
containing the tissue factor. This starts the cascade
of chemical reactions resulting in the production of
fibrin. The clot is defined as a region where the fibrin
concentration (CF) exceeds some prescribed threshold
valueCCLOT. This serves as an indicator of the change
on the constitutive relation for blood and clot, which
have different material properties. Figure 1 shows a
cartoon with the modeling approach.

Injured Vessel Wall Blood Vessel Wall

Tissue Factor

C  <CF CLOT

Clot

MODEL 1

MODEL 2
C  >CF CLOT

Figure 1: Clot modeling strategy

In the present simulations we have assumed that the
clot viscosity is different from the blood viscosity.
The biochemical model underlying clot formation was
not a subject of this preliminary study and therefore
the region ocupied by the clot was prescribed and
fixed for all simulations.

3 Numerical Method

The numerical solution of the above described model
is based on a finite-volume semi-discretization with
explicit Runge-Kutta time integration. We look for
a steady solution by time-marching approach, i.e.
the unsteady governing system is solved with steady
boundary conditions and the stationary solution is re-
covered whent −→ ∞.

The artificial compressibility formulation was
used to resolve pressure and enforce the divergence-
free constraint. The equation (1) is modified by
adding the time-derivative of pressure properly scaled
by the artificial speed of soundc:

1

c
2

∂p

∂t
+ div u = 0 (10)

3.1 Space discretization

The computational mesh is structured, consisting of
hexahedral control volumes. To evaluate the viscous
fluxes also dual finite volumes are needed. These have
octahedral shape and are centered around the corre-
sponding primary cell faces. See the following figure
2 for the schematic view of such configuration.

Figure 2: Finite-volume grid in 3D

The system of generalized NS equations can be
rewritten in the vector form. Here we useW to denote
the vector of unknowns (including pressure). Vectors
F, G andH denote the inviscid fluxes inx,y,z direc-
tions, whileR, S andT stand for their viscous coun-
terparts. Using this notation, the spatial finite-volume
semi-discretization in the cellD can be written in the
following form:

∂W

∂t
=

−1

|D|

∮

∂D

[

(F − R), (G − S), (H − T)
]

· ν̂ dS

(11)
HereD denotes the computational cell,ν̂ is the outer
unit normal vector of the cell boundary,dS is the sur-
face element of this boundary. Equation (11) can be
rewritten in operator form:

∂Wijk

∂t
= −LWi,j,k (12)

Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp73-78)



HereL stands for the finite-volume discretization op-
erator. This operator is still exact at this stage and it
must be properly discretized to allow for numerical
solution. This is done by replacing the fluxes in the
formulation by their numerical approximations.

The inviscid flux integral can be approximated us-
ing centered cell fluxes, e.g. the value of the fluxF on
the cell face with indexℓ = 1 is computed as the av-
erage of cell-centered values from both sides of this
face:

F
n
1 =

1

2
[F(Wn

i,j,k) + F(Wn
i+1,j,k)] (13)

The contribution of inviscid fluxes is finally summed
up over the cell facesℓ = 1, . . . , 6. In this way we can
write the inviscid flux approximation:

∮

∂D

Fνx dy dz ≈
6

∑

ℓ=1

Fℓν
x
ℓ Sℓ (14)

The discretization of viscous fluxes is a little bit more
complicated since the vectorsR, S, T were defined us-
ing the derivatives of velocity components and these
derivatives need to be approximated at cell faces. This
can be done using the dual finite-volumes centered
around the corresponding faces (see Figure 2).

The evaluation of the velocity gradient compo-
nents is then replaced by the evaluation of the sur-
face integral over the dual volume boundary. Finally,
this surface integral is approximated by a discrete sum
over the dual cell faces (with indicesm = 1, . . . , 8).
For example trying to evaluate the first component of
the viscous fluxR1 (i.e. approximateux) at the cell
facel = 1 we must proceed in the following way:

ux ≈

∮

∂D̃

u νx dy dz ≈
8

∑

m=1

umνx
mSm (15)

The outer normal of the dual cell faces should be prop-
erly approximatedνx ≈ νx

m. The values of veloc-
ity components in the middle nodes of these faces are
taken as an average of the values in the corresponding
vertices.

3.2 Time integration

The problem is now in the semi-discrete form:

dWijk

dt
= −L̃Wi,j,k. (16)

This system of ordinary differential equations can be
solved e.g. by the Runge-Kutta multistage method:

W
(0)
i,j,k = W

n
i,j,k

W
(r+1)
i,j,k = W

(0)
i,j,k − α

(r)
∆tL̃W

(r)
i,j,k (17)

W
n+1
i,j,k = W

(m)
i,j,k

Here r = 1, . . . , m, for the m-stage method. The
three-stage explicit RK scheme has coefficients:
α

(1)
= 1/2, α

(2)
= 1/2, α

(3)
= 1.

4 Numerical Results

The computational domain represents a straight vessel
of finite length. The cylinder has a diameter D=6.2
mm and length L=5D=31 mm. The region occupied
by the clot is assumed to have spherical shape with
center placed at 1/3 of L and has a radius equal D/2.
Mean inlet velocity isU0 = 6.15 cm/s.

The numerical results presented in this paper
corespond to a generalized Newtonian fluid with vis-
cosity described in section 2.4. The results provide a
qualitative study of the model behavior with respect to
the ratio of clot viscosity versus blood viscosity. The
clot viscosity is usually referred to be much higher
than the one of blood. Thus a parameter range has
been chosen for withµClot/µBlood = 1, 5, 10, 20, 40,
which seems to be sufficient for the clot formation
modeling. It is obvious that forµClot/µBlood = 1
there is no clot and the flow should tend to fully
developed axisymmetric profile. The inlet velocity
profile is prescribed as an exact solution of Newto-
nian flow at viscosityµ∞. This leeds to some minor
non-Newtonian velocity profile adjustment close to
inlet as it can bee seen in Figure 3.

X

ZY

X

ZY

X

ZY

X

ZY

X

ZY

Figure 3: Axial velocity contours in the vessel
symmetry plane for viscosity ratioµClot/µBlood =
1, 5, 10, 20, 40 (from top to bottom).
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Figure 4: Pressure contours in the vessel symmetry
plane for viscosity ratio, 5, 10, 20, 40 (from top to
bottom).

It is important to note that the shear-thinning be-
havior of blood reinforces the simulated clot effect.
The local increase of viscosity causes flow deceler-
ation and results in decrease of the local shear rate.
Lower shear-rate leeds to further viscosity increase
due to shear-thinning.

The semi-spherical shape of the simulated clot
leeds to important three-dimensional flow structure in
the proximity of the artificial obstacle. This can be
detected from velocity contours shown in transversal
sections. The placement of these sections is shown in
Figure 5.

X

ZY

BA C

Figure 5: Section placement with respect to clot area.

The axial velocity contours in the case
µClot/µBlood = 40 are shown in Figure 6.

The incoming velocity profile symmetry is broken
by the asymmetrically placed clot region. This can

be seen in the shift of the maximal velocity from the
center of the cross-section.

x

y

x

y

x

y

Figure 6: Axial velocity contours in the sections A, B
and C forµClot/µBlood = 40
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5 Conclusion and Comments
• Numerical results have shown the expected be-

havior of flow field in the vicinity of simulated
clot. Simple change in local viscosity leeds to
required behavior typical for solid obstacles of
impermeable or porous media type.

• More details on the numerical method used and
corresponding numerical results will be provided
in a forthcoming paper.

• The fixed (prescribed) clot shape will be further
replaced by an appropriate fibrin concentration
isosurface resulting from the solution of coupled
biochemistry model. The time dependent in-
crease in fibrin concentration can be reflected by
the appropriate increase in local viscosity ratio.

• Future extension of this work will follow the un-
steady (pulsatile) blood flow behavior in living
organisms. The unsteady extension of presented
solvers is crucial for future realistic calculations
of flow and flow-structure problems.

• The same approach to the shear-thinning blood
behavior could be adopted also for more com-
plex rheological constitutive laws (e.g. for visco-
elastic models). The non-linearity of such com-
plex model could leed to formation of unex-
pected clot shapes due to viscoelastic extra stress.
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