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Abstract: The values of the breakdown voltage of an air gap depend on the maximum value of the field 
strength in the gap, as well as the corona leakage current through the gap. In the present paper we investigate 
the Ground Effect of small rod–plate air gaps, a phenomenon, which is observed due to the grounding of one 
of the electrodes. Values of the field strength in the gap are recorded and analyzed for the two different 
arrangements, with the rod or the plate grounded. The distribution of the field along the axis of the gap is 
strongly affected by the geometry of the gap, and especially by the electrode chosen to be grounded. The 
Ground Effect affects the corona onset and the breakdown voltage of the rod-plate air gaps analogically. The 
Ground Effect is intense in small rod-plate air gaps, slightly affected by the Polarity Effect, while the 
influence of the corona leakage current appears in longer air gaps, where the Ground Effect is decreased, then 
is vanished and after it is reversed, as the gap length increases.. 
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1 Introduction 
One of the most determinant factors of the dielectric 
behavior (strength) of the insulating arrangements 
and especially of the air gaps is the field strength 
distribution inside the volume of the arrangement, 
and especially the maximum value of the field 
strength in the gap, which appears on the rod. Other 
factors are the polarity and the form of the applied 
voltage as well as the corona effects, which take 
place when the field strength exceeds some specific 
value, [1], [2], [3], [4], [5].  
In every insulated arrangement and especially in air 
gap arrangements, where there is no symmetrical 
charging, because one of the electrodes is grounded 
and the other is electrically charged, differences of 
the electric field’s distribution and of the maximum 
value of the field strength are observed in 
comparison to the arrangement where both 
electrodes are electrically charged with opposite 
charges. The differences occur due to the asymmetry 
that is caused by the grounding of one of the 
electrodes. The two basic factors that affect the 
differences in the field distribution are the geometry 
of the arrangement as well as the size and shape of 
the boundary surface in the simulation analysis, [6], 

[7], [8], [9], [10], [11].  
The above differences in the field distribution 
influence the corona onset and the breakdown 
voltage of the arrangement accordingly, [8], [9], 
[10], [11]. 
In symmetrical arrangements such as rod-rod air 
gaps the influence caused due to the grounding of 
one of the electrodes is rather small, resulting this 
way to small differences of the breakdown voltage 
between the two cases where the stressed voltage is 
of positive or negative polarity, [12], [13]. This 
occurs because of the Polarity Effect which would 
not exist if the symmetrical arrangement was 
symmetrically charged, that is positive charge for 
one of the electrodes and negative for the other.  
In non-symmetrical arrangements, such as rod-plate 
air gaps, the grounding’s influence in the 
distribution of the field is significant, depending on 
the rod’s and plate’s size. This is easily revealed 
with the analysis of the field with the Finite Element 
Method. Respectively important can also be 
considered the influence of one of the electrode’s 
grounding to the corona onset and the breakdown 
voltage of the gap, [6], [7], [8], [9], [10], [11]. 
This recently studied phenomenon is called the 
Ground Effect and is clearly different from the 
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Polarity Effect although slightly influenced by it, [8], 
[9], [10], [11]. 
This paper investigates the Modelling and Analysis of 
the electric field distribution in rod-plate air gaps 
under different geometries and arrangements of the 
gaps, using the Finite Element Method. The Ground 
Effect is investigated as it concerns the field’s 
distribution as well as the corona onset and the 
breakdown voltage. The influence of the corona 
leakage current is also presented. 
Special software has been used in the present paper 
for the simulation analysis. It is based on the Finite 
Element Method in order to solve two-dimensional 
problems with axisymetric models.  
The program is based on Gauss’s and Poisson’s  
equations. 
                               V−∇=E              (1) 
 

                   ρ−=∇D                 (2) 

or            
ε
ρ

−=∇ V2              (3) 

where E is the field strength,  ρ is the space charge 
density in C/m3, ε is the dielectric constant of the 
medium, V is the voltage, and D=εE is the dielectric 
displacement.  
The electric charge density, and the total electric 
charge on a particular surface S, or in the volume 
included in surface S, are calculated by equations. 
 

Dn∆=q ,     and     ds
s

Dn ⋅= ∫Q    (4) 

The boundary conditions and especially the mesh 
density used for the analysis are of great importance 
for accurate results.  
 
 
2 The investigated arrangements.  
The arrangements, which have been drawn, analyzed, 
and experimentally studied, are typical rod-plate air 
gap arrangements of different geometries. The rod 
electrode is a cylinder long enough, with a small 
diameter (2-14 mm) and a hemisphere tip. The plate 
electrode is a disk plate of 50 - 200 mm in diameter. 
One electrode of each arrangement is stressed by high 
DC voltage of negative or positive polarity or AC 
voltage while the other is grounded. All the analyzed 
models are axisymetric, with a spherical shield big 
enough in diameter, (figs 1, 2 and 3). Also the node’s 
spacing is small enough. 
The average value of the field strength, along the axis 
of an air gap is defined by equation:  

    
G
V

av=Ε                          (5) 

The field factor (or efficiency factor) n is a net 
number, which defines the inhomogeneity of the field 
in the gap and is expressed by equation:  

     
Eav

Emaxn =                        (6) 

For a rod-plate air gap the field factor is given by 
equation [1], [2]. 

             

r
G

r

G
4

ln

2
n

⋅
=          If G>>r        (7) 

, where V is the applied voltage, G is the gap length, 
Emax is the maximum value of the field strength (on 
the rod), and r is the radius of the rod’s tip. The 
plate’s diameter is big enough.  
 

 
(a) Rod - plate air gap, with symmetrical charging of 

the electrodes. 
 

 
   (b) Rod - plate air gap, with grounded plate. 
 

 
 
     (c). Rod - plate air gap, with grounded rod. 

Fig. 1. The experimental arrangements 
 

 
       

 
 
 
 
 
 
 

 
Fig 2.  The simulated  model 
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The Polarity Effect affects the Corona Onset field 
strength and hence the Ground Effect slightly 
according to equations, [1], [2]: 
E + = A+δ + Β+*(δ/r)^0.5 
E - = A-δ + Β-*(δ/r)^0.5 
where δ=2.94*Ρ/273+θ, Α+=31 to 39.8 KV/cm,       
Α-=29.4 to 40.3 KV/cm, Β+=11.8 to 8.4 KV/cm, and  
Β- = 9.9 to 7.3 KV/cm.,  r is the radius of the rod, P is 
the pressure and θ is the centigrade temperature of the 
air.  
 
 
3 The influence of the Ground Effect to  

the field distribution.  
Rod-plate arrangements, with different grounded 
electrode, different dimensions of the plate and the 
rod, and different length of the gap have been 
modeled and analyzed. From the comparison between 
the three different cases of arrangement with the rod 
or the plate grounded, either with symmetrical 
charging of the electrodes, it is resulted that the 
Ground Effect causes big differences in the field 
distribution between the three different arrangements.  
The field distribution, the maximum value of the field 
strength in a rod – plate air gap and the field factor of 
the gap are demonstrated in figs 4, 5, 6, and 7.  It is 
obvious that the Ground Effect is intense in rod-plate 
air gaps. 
In both arrangements, the maximum value of the field 
strength in the gap (field strength on the rod) 
decreases with the gap length. It is higher in the 
arrangement with the plate grounded and tends to get 
a steady value for each value of the rod’s diameter 
when the gap is longer than 80% of the plate’s 
diameter.  
    

Rod-plate air gap. Rod 10 mm, plate 100 mm. 
Applied voltage 1 V.
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 Fig  3.  Rod - plate air gap.  The maximum values of 
the field strength on the rod, Er, for the three different 
arrangements are shown in comparison.  
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Rod plate air gap, with the rod grounded.
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(a) Values of field strength on the rod. 
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 (b) Field factor along the axis of the gap 
Figs 5.  Rod-plate air gap, with the rod grounded. 
The rod’s diameter is dr, and the plate’s diameter is 
100 mm.  
 
It is also resulted that the field factor (n=Er/Eav) 
increases with the gap length. It takes lower values in 
the arrangement with the rod grounded and tends to 
get a steady value for each value of the rod’s diameter 
when the gap length is longer than 80% of the plate’s 
diameter, (fig 6b). In the arrangement with the plate 
grounded it increases continuously and is in complete 
agreement with equation 7, (fig 6a).   

Fig. 4.  
Field strength  
distribution in  
rod-plate air gap  
models from simulation 
analysis. 
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 Rod - plate air gap with the plate 
grounded. 
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(a) The field factor along the axis 

Rod - plate air gap with the plate grounded.
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 (b) The field strength on the rod.  
Figs 6.  Rod-plate air gap, with the plate grounded.  
The rod’s diameter is dr and the plate’s diameter is 
100 mm.  

Rod-plate air gap 5 cm. Rod's diameter  10 mm, 
voltage 1 V.
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(a) In function with the plate’s diameter.  

rod-plate air gap 5 cm. Rod 10 mm, plate 100 mm
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 (b) In function with the shield’s diameter. 
 Figs 7.   The field strength on the rod in a rod plate 
air gap for the two different arrangements with the rod 
or the plate grounded. Voltage is 1 V.   

From figs 8 it is resulted that the differences in the 
value of the field strength on the rod (maximum value 
in the gap), between the two different arrangements 
with the plate or the rod grounded, or with 
symmetrical charging of the electrode, decrease as the 
plate’s diameter increase, while it is not affected by 
the shield’s diameter. When the plate’s diameter 
becomes very large the Ground Effect decreases, 
because of the mirror effect. In this case the rod-plate 
arrangement functions like a rod-rod arrangement of 
double length, stressed by double voltage.  
 
   
4 The influence of the Polarity and the 

Ground Effect to the corona onset 
voltage in rod – plate air gaps.  

The Polarity and the Ground Effect influence the 
corona onset voltage of small rod-plate air gaps as it is 
resulted from figs 9, 10, 11 and 12.  
 
4.1 The influence of the Polarity Effect. 
It is well known that the polarity of the rod’s voltage 
in relation to the plate, which is grounded, influences 
the corona onset field strength and thus the corona 
onset voltage [1], [2], [14], [15], [16], [17], [18]. 
 
4. 1.1.  The arrangement with the plate grounded. 
In the arrangement with the plate grounded the 
Polarity Effect influences the corona onset voltage 
slightly in favour of the positive polarity of the applied 
voltage, as it is expected and shown in fig. 8.  
 

Rod-plate air gap. Rod 4 mm, plate 100 
mm. 
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Fig. 8. The Polarity Effect in the rod-plate 
arrangement with the plate grounded. 
 
4.1.2. The arrangement with the rod grounded. 
In the arrangement with the rod grounded the Polarity 
Effect does not seem to influence the corona onset 
voltage in favour of the negative polarity of the 
applied voltage as it is expected, (fig. 9). 
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Rod-plate air gap. Rod 4 mm, plate 100 mm. 

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10
Gap length cm.

C
or

on
a 

O
ns

et
 V

ol
ta

ge
K

V

Vc-r-gr (+)

Vc-r-gr (-)

 
Fig.9. The Polarity Effect in the rod-plate arrangement 
with the rod grounded. 
 
4.2 The influence of the Ground Effect.  
The grounding of one of the electrodes influences the 
corona onset voltage significantly depending on the 
gap length, as well as the rod’s and the plate’s 
diameter.  
 
4.2.1. The applied voltage is positive DC. 
When the applied voltage is DC positive the corona 
onset voltage of the arrangement with the rod 
grounded is significantly higher than the arrangement 
with the plate grounded, as it is shown in figs 10. The 
Polarity Effect reduces the Ground Effect slightly. The 
relation between the field strength on the rod 
(maximum value of field strength in the gap) and the 
corona onset voltage is: 
V c-r-gr / V c-pl-gr =A*(E c-pl-gr /E c-r-gr), where A<1 
 

Rod-plate air gap. Rod 4 mm,
 plate 100 mm. DC(+).
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Fig 10. The Ground Effect for positive DC voltage. 
 
 
4.2.2. The applied voltage is negative DC. 
 When the applied voltage is DC negative the 
arrangement with the rod grounded appears much 
higher values of the corona onset voltage than in the 
arrangement with the plate grounded, as it is shown in 
figs 11. The Polarity Effect intensifies the Ground 

Effect. When the rod is grounded the rod is positive in 
relation to the plate and thus the influence of the 
Polarity Effect is added to that of the Ground Effect. 
The relation between the field strength on the rod 
(maximum value of field strength in the gap) and the 
corona onset voltage is: 
V c-r-gr / V c-pl-gr =A*(E c-pl-gr /E c-r-gr), where A≈1 
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Figs 11 The Ground Effect for negative DC voltage. 
 
 
4.2.3. The applied voltage is AC.       

ROD PLATE AIR GAP. ROD 6 mm, PLATE 100 mm. 
AC Voltage.
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Fig 12. The Ground Effect for AC voltage 
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When the applied voltage is AC the arrangement with 
the rod grounded appears much higher corona onset 
voltage than the arrangement with the plate grounded, 
as it is shown in fig 12. The Polarity Effect reduces the 
Ground Effect. The corona effects appear in negative 
half cycle, when the plate is grounded and in positive 
half cycle when the rod is grounded. The relation 
between the field strength on the rod (maximum value 
of field strength in the gap) and the corona onset 
voltage is: 
V c-r-gr / V c-pl-gr =A*(E c-pl-gr /E c-r-gr),   where A<1 
 
4.3. The combined influence of the Ground and the 
Polarity Effect to the corona onset voltage of rod-
plate air gaps. 
The corona onset voltage is higher for the 
arrangement with the rod grounded in small rod-plate 
air gaps. This is in full agreement with the results of 
the analysis, by which it is concluded that the 
maximum value of the field strength in the 
arrangement with the rod grounded is comparatively 
lower (figs 3, 5, 6, 7, and 8). The Polarity Effect 
influences the Ground Effect slightly, as it is shown in 
fig 13. 
    

Rod-plate air gap. Rod 4 mm, plate 100 mm. The 
Ground Effect. DC voltage.
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Fig 13. The Ground Effect and the Polarity Effect 
in rod plate arrangements.  
 
 
5 The influence of the Ground Effect to 

the breakdown voltage in rod – plate 
air gaps.  

The Polarity Effect influences the breakdown voltage 
in relatively long air gaps in favor of DC voltage of 
negative polarity, because of intensive corona effects, 
[1], [2]. 
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Fig. 14. Corona onset and breakdown voltage of rod – 
plate arrangements with the rod or the plate grounded 
for negative DC applied voltage. Rod’s diameter 6 
mm. 
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 Figs 15. The breakdown voltage in connection to the 
corona leakage current in rod-plate air gaps for the 
two different arrangements with the rod or the plate 
grounded, and for DC and AC voltage. 
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The Ground Effect influences the breakdown voltage 
in small air gaps. The breakdown voltage is higher for 
the arrangement with the rod grounded. This is in full 
agreement with the results of the analysis, by which it 
is concluded that the maximum value of the field 
strength in the arrangement with the rod grounded is 
comparatively lower (figs 3, 5, 6, and 7). 
We can say that the Ground Effect is overturned and 
the breakdown voltage increases significantly and 
becomes higher in the arrangement with the plate 
grounded, because of the influence of the corona 
leakage current (Polarity Effect) (figs 14, 15). 
The results are most significant and clearer when the 
breakdown voltage appears before the corona effects, 
and this happens when the gap length is very small. If 
the gap length is large enough the influence of the 
corona leakage current suppresses the Ground Effect, 
and the breakdown voltage is considerably higher in 
the arrangement with the plate grounded. 
The effect is stronger when the rod’s diameter is 
very small, because in this case the corona leakage 
current is a lot higher. 
 
 
6 Conclusions 
1. The influence of the Ground Effect to the field 

distribution is intense in all rod-plate 
arrangements, and it grows stronger when the 
rod’s and the plate’s diameter is decreased and 
when the gap length is increased. This means that 
the inhomogeneity of the electric field influences 
the Ground Effect. That leads the maximum value 
of the field strength that usually appears on the 
rod and hence the value of the field factor to be 
high, and turn much higher when the arrangement 
is used with the plate grounded than with the rod 
grounded. The Ground Effect is negligible when 
the Plate’s diameter is very large. 

2. The Ground Effect influences the corona onset 
and the breakdown voltage of small rod-plate air 
gaps strongly. In the arrangement with the rod 
grounded, the corona onset voltage and the 
breakdown voltage are higher.  

3. The Polarity Effect also influences the corona 
onset voltage, but in a different way, and reduces 
or reinforces the Ground Effect respectively. 

4. A relation between the maximum value of the 
field strength on the rod and the corona onset as 
well as the breakdown voltage appears. 

5. When the air gap is long enough and the corona 
leakage current is relatively high the Polarity 
Effect suppresses the Ground Effect and the 
breakdown voltage is higher for the arrangement 
with the plate grounded.  

6. Future work will contain the full analysis of the 
Ground Effect for rod-plate air gaps of different 
geometries as far as the diameter of the rod and 
the plate is concerned, stressed by DC voltages of 
negative or positive polarity and AC voltages. The 
mathematical functions between the field strength 
and the breakdown voltage (dielectric strength) of 
the air gaps, as well as between the breakdown 
voltage of the gap and the corona leakage current 
through the gap will also be investigated.  
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