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Abstract: - Using Computer Algebra Software certain work about symbolic computational rheology is realized. 
The explicit solutions for the transport equation corresponding to the transient flow within a movable tube, for 
certain  visco-elastic fluid with  rheological memory and variable viscosity is derived.  Four different cases are 
considered and the corresponding solutions are given in terms of Bessel functions. The first case corresponds to 
the periodic laminar flow without memory and constant viscosity. The second case is concerned with the 
periodic  laminar flow without memory but with variable viscosity. The third case corresponds to the transient 
laminar flow with memory and constant viscosity. And the fourth case is concerned with the transient laminar 
flow with memory but with variable viscosity. The transport equation that is used here, results from the 
combination of the general form of the equation of continuum mechanics with a rheological model of the Kelvin 
kind with a generalization using rheological memory. For the problems with periodic flow, the method of 
solution is the separation of variables and for the problems with transient flow, the method of solution is the 
Laplace Transform Technique with the application of the Bromwich integral and the residue theorem. The 
solutions are obtained by means of two algorithm for computer algebra, one for the case of periodic flow and 
other for the transient flow.. As  results we obtain the explicit forms of the velocity fields of the fluid for the four 
considered cases and also we made a stability analysis of our results both for periodic flow as for transient flow. 
 
 
Key-Words: - Symbolic Computational Rheology, Computer Algebra, Generalized Maxwell Model, Periodic 
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1.   Introduction 
Recently we have presented some examples on 
Symbolic Computational Rheology [1]. In fact the 
Mathematical Rheology is a source of very 
interesting computational problems. It is possible at 
the present time to speak about the Computational 
Rheology (CR) as a new emergent scientific 
discipline. Within the domain of CR we can observe 
two lines of development. The first line is named 
Numerical Computational Rheology (NCR) and the 
second line is named Symbolic Computational 
Rheology (SCR). The NCR is concerned with 
numerical solutions of non-linear mathematical 
rheological problems using appropriate software for 
numerical computation. The SCR is dedicated to 
obtain analytical solutions for linear mathematical 
rheological problems using Computer Algebra 
Sotware (CAS) for symbolic computation [2]. The 
domain of NCR is the dominant paradigm but the 

present authors think that the SCR is a land 
practically unexplored and very interesting.  As we 
said previously, we continue here the work on SCR 
that was initiated at [1]. In reference [1], certain 
linear problem for impulse transport for a certain 
non-newtonian fluid with visco-elastic properties and 
some kind of rheological memory, was solved using 
Maple [3]. The mathematical model was a modified 
Navier-Stokes equation. Now in the present work we 
consider a more general situation with a more 
complex mathematical model. Specifically we 
combine the general movement equations of 
continuum  media with  an extended rheological 
model of the Maxwell kind with memory. We 
consider both periodic and transient flow in movable 
tube. Also we consider the cases with homogeneous 
and inhomogeneous viscosity.  
The method that we apply to study the periodic flow 
is the method of separation of variables but the 
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method that we use to study the transient flow is the 
Laplace Transform Technique with the Bromwich 
integral and the residue theorem [4]. The stability 
analysis of the transient flow is realized using the 
Routh-Hurwitz theorem.  All calculations are 
implemented using certain Maple algorithm. The 
computations are very  long and heavy as to be made 
by hand, using only pen and paper. We confirm here 
the great importance of CAS for SCR. 

2   The Mathematical Problem 
Here we consider the problem of transient laminar 
flow for a  generalized viscous-elastic fluid inside a 
movable circular tube with a pressure gradient, with 
rheological memory and variable viscosity.  The two 
equations that describe the system are [5] 
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where  (1) is a general equation of continuum 
mechanics (Newton Law for continuum media) [5] 
and (2) is generalized Maxwell model [5] for a 
incompressible and visco-elastic fluid with 
rheological memory and with a spatially variable 
viscosity. In (1), � is the density of the fluid, v(r,t) is 
the velocity of fluid at distance r from the axis of the 
tube of radius a at time t, P(z) is the pressure of fluid 
at the plane z and �r,z (r,t) is the stress on fluid at a 
distance r at time t. In the equation (2), �(r) is the 
viscosity of fluid which is variable on the space, �0 is 
certain characteristic time of the fluid and � and � are 
the parameters that specify the rheological memory 
assumed exponentially decreasing. 
The mathematical problem that is proposed here 
consists in to obtain the analytical solution for the 
system of equations (1) and (2) with the following 
initial and boundary conditions 
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The equation (3) says that fluid starts from the rest. 
The equation (4) gives the initial profile of stresses 
within the fluid.  The equation (5) says that the 
velocity of fluid at the wall of tube is justly the 
velocity of tube like  a whole.  At general  f(r) , g(r) 
and h(t) are arbitrary functions. 

 
3   Problem Solution 
Our rheological model (1)-(5) is a linear model but it 
can not be solved at general by means of the method 
of separation of variables. It is necessary to apply the 
Laplace Transform method, making the inverse 

transform by means of the theorem of residues [4], 
when the symbolic computation of the transient flow 
is required.. Since the necessary manipulations to 
solve our rheological model are too voluminous as 
for to be made by hand with pencil and paper, it is 
necessary to apply some type of system of computer 
algebra that allows symbolic computation.  
 
 
3.1.  Method of Solution 
We intend to solve (1)-(5) both for the periodic flow 
as for the transient flow  including the cases with 
constant a variable viscosity.  For the case of 
periodic flow we use the method of separation of 
variables. For the case of transient flow we use 
the method of Laplace transform with 
Bromwich-residues . The two methods are 
implemented at fully using two algorithms of 
computer algebra 
A sketch of the algorithm for computation of the 
solution for periodic flow  is as follows.  

1.  Assume the following forms of periodic flow 
with frequency  w and without memory  
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2. Substitute (6) ,(7) and (9) on (2) and express 

the stress on terms of derivatives of velocity. 
3. Substitute the obtained stress in the equation 

(1) and solve this equation  with the 
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boundary condition  v(a) = �  and the 
finitude condition v(0) = finite.  

4. With the obtained velocity profile to compute 
the total flux in the tube. 

5. Determine the analytical form of the pressure 
gradient that it is necessary to apply to 
maintain the periodic flow with a determined 
total flux. 

This algorithm is easily turned into a Maple 
algorithm. 
Now, for the case of transient flow, a sketch of the 
algorithm is as follows: 
The inputs of the algorithm are:  Sys, that represents 
the equations (1)-(2); I.C. that represents the initial 
conditions (3)-(4); B.C. that represents the boundary 
condition (5); and F.C. that represents a certain 
finitude condition for the solutions. 
The output for the algorithm is the explicit solution of 
(1)-(5) it is to say the analytical forms fro v(r,t) and 
�r,z (r,t). Our second algorithm operates at the 
following way: The inputs Sys., I.C., and B.C,  by 
means of a Laplace  Transformer are turned into a 
transformed system denoted T.Sys.  and a transformed 
boundary condition denoted T.B.C. Then, T.Sys, 
T.B.C. and F.C. are processed by a certain Dsolver 
that generates the transformed solution denoted Tsol.  
Next,  Tsol is processed by means of an inverser  
with residue theorem, and we obtain the explicit form 
of the solution, denote sol. Finally, a  stability 
analysis  based on Routh-Hurwitz theorem is realized 
and the algorithm is finished. 
With the analytical profiles of velocities that are 
obtained, the total fluxes within the tube are 
computed and other rheological magnitudes are 
calculated, such as the necessary gradients to 
maintain the periodic flow or the distribution of 
stresses within the fluid for the case of transient flow. 
 
 
3.2.  Results of Computations 
Here we present the results of computations for the 
four considered cases:   

1. Periodic flow without memory (� = 0) with 
constant viscosity (�(r) = �) and h(t)= � ei w t 

2. Periodic flow without memory (� = 0) with 
variable viscosity (�(r) = �r) and h(t)= � ei w t 

3. Transient flow with memory, constant 
viscosity (�(r) = �) and h(t)=� e-�t 

4. Transient flow with memory , variable 
viscosity ((�(r) = �r) and h(t)=� e-�t 

For this four cases the results that were obtained 
using our Maple algorithms are as follows. 
 
3.2.1. first case 
For the first case the solution is 
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                                                                               (10) 
where J0(x) is the Bessel function of the first kind and 
zero order [6]. Strictly speaking the truly velocity 
profile is the real part of (10).  
 
3.2.2. second case 
For the second case the velocity profile is of the form 
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                                                                               (12) 
being J1(x) the Bessel function of the firs kind and 
order one [6]. 
 
3.2.3 third case 
For the third case the velocity profile is showed at the 
first equation of the Figure 1. In such equation, 	n are 
the zeroes of  J0(x), it is to say J0(	n) = 0,  with n 
1. 
The function �(s) is defined as 
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and the parameters denoted Si,n are the roots of the 
cubic equation on s: 
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3.2.3 fourth case 
For the fourth case the velocity profile is displayed at 
the first equation of the Figure 1. In such equation, 
now, 	n are the non-vanishing  zeroes of  J1(x), it is to 
say J1(	n) = 0,  with n 
1. Again the function �(s) is 
given by (14)  and the parameters Si,n are now the 
solutions of the following  cubic equation 
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3.3  Analysis of Results 
 
 
3.3.1 first case 
From the equation (10) the total flux inside the tube is 
given by the first equation at Figure 3. In this 
equation  BesselJ(0,x) = J0 (x)  and BesselJ(1,x) = 
J1(x).  Using the computed total flux we can to 
determine the pressure gradient that is necessary to 
apply with the aim to maintain the periodic flow with 
a discharge Q. The result is showed in the first row of 
the Table 1. 
 
3.3.2 second case 
Starting from (12) the total flux inside the tube is 
calculated and the result is showed by the second  
equation at Figure 3. For this case the computation of 
the necessary pressure gradient to maintain the 
periodic flow is more difficult and such calculation 
will not be presented here. 
 
3.3.3 third case 
The total flux inside the tube for this case is displayed 
in the second equation of Figure 1. We note that the 
first equation which gives the velocity profile has 
three parts: the part 1 is the usual stationary flow in a 
tube with renormalized viscosity, the part 2 has the 
same temporal dependence that the boundary 
condition (5) and the part 3 is the genuine transient 
flow because the temporal dependence of this part is 
determined by the rheological properties of the fluid 
according with (14) and by the Routh-Hurwitz 
theorem (RHT). The equation (14) can be rewritten as 
is showed at the second row of Table 1. For hence we 
have that the first Hurwitz inequality according to the 
RHT is given by: 
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The other two Hurwitz inequalities are showed at the 
second row of Table 1. As the reader can note, given 
the physical meanings of the parameters, all Hurwitz 
inequalities are satisfied automatically and then the 
transient flow is stable, it is to say all roots Si,n have 
positive real parts. 

 
3.3.4 fourth case 
For this case, the total flux is given by the second 
equation at Figure 2. In this case we have again that 
the velocity profile is the sum of three parts which are 
similar to the three parts of the third case. The 
equation (16) can be rewritten as is displayed at the 
third row of the Table 1. The first Hurwitz inequality 
for this case is  
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�
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and the others two inequalities are given at the third 
row of Table 2. We observe again that the three 
Hurwitz inequalities are automatically satisfied and 
for hence the transient flow is stable, it is to say tends 
to decay when t �  . 
 
4   Conclusion 
This work was a second exploration of the almost 
virgin land of Symbolic Computational Rheology. 
The problem that was considered here, was a linear 
problem, whose solution can be obtained 
symbolically using certain algorithms of computer 
algebra. Our principal contributions are  the equations 
(10)  and (12)  jointly with the figures 1,2, 3 and the 
Table 1. 
The algorithms that were used can be applied to 
others more complex linear problems with more 
general  boundary conditions. It is evident from this 
work  that  computer algebra is very useful to study 
those problems on mathematical rheology that 
demands the calculation of the analytical solutions of 
the modified or generalized Navier-Stokes equations.   
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Figure 1.  Results of computations for the third case (transient flow with memory and constant viscosity)  

 
Figure 2. Results of Computation for the fourth case (transient flow with memory and variable viscosity) 
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Figure 3.  Total fluxes for cases first and second 

 
Table 1.  Pressure Gradient for periodic flow and Stability analysis for transient flow 

Pressure Gradient for the periodic flow without memory and  with constant viscosity 
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Characteristic Equation for the transient flow with memory and constant viscosity 
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Hurwitz Inequalities for Stability: 
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Characteristic Equation for the transient flow with memory and variable viscosity 
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Hurwitz Inequalities for Stability 
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