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Abstract: The main goal of the paper is the presentation of several results on the asymptotic dynamics of modes in
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1 Introduction

LetT > 0 and letQ c R3 be a smooth bounded do-
main. We deal with the homogeneous Navier-Stokes
initial-boundary value problem which is defined by
the equations

ow

ot + (w-V)w = -Vp+vAw, 1)
V-w=0 (2)

in Qr = Q x (0,7, by the initial condition
w(z,0) = wo(x), foreveryz e Q (3)

and by the homogeneous Dirichlet boundary condi-
tions
(4)

The unknownw = (w;,wy,ws) stands for velocity,
p denotes pressure and > 0 is the kinematic vis-
cosity. The equations (1) and (2) describe the flow
of a Newtonian viscous incompressible fluid (water)
and its evolution in time. The Navier-Stokes equa-
tions (1) express the conservation of momentum and
the equation of continuity (2) expresses the conserva-
tion of mass. Although the mathematical theory of the
Navier-Stokes equations is deeply elaborated, many
important questions still remain open. Especially, the
guestion of the global in time existence of a smooth
solution for arbitrarily large smooth initial data has not
yet been solved and it belongs to the most challenging
open problems od today’s theory of partial differen-
tial equations. The survey of main results and open
problems can be found e.g. in [3].

In this paper we deal with a special problem: we
study the decay of a strong global solution of (1) - (4)

w=0 ondQx(0,T).

for ¢ approaching infinity. It is known that in this case
every such solution decreases exponentially to zero
for t — oo (in some norms). So, the nonlinear term
(w - V)w is "weak” for larget and does not have the
strength to influence the flow in any substantial way.
As a consequence, more precise information on the
decay of the solution can be obtained.

To describe our problem more precisely, we will
write the equations (1) - (4) in the following form (for
the explanation see e.qg. [2], [3] or [11]):

dw—l—Aw—l—B

dt (’LU, ’LU) =0,
w(0) = wo

(5)
(6)

and remind several basic concepts (see also [2], [3],
[10] or [11]) concerning the equations (5) and (6):

o L? = L*(Q) is the Lebegue space with the norm
- 1-

Wt = W1(Q),s > 0,q > 2, are the Sobolev
spaces endowed with the noffm || 4.

L? = L2(Q) is a subspace of?(2)? which con-
tains functionai whose divergence equals zerdin

in the sense of distributions arid - n)|pn = 0 in
the sense of traces.

(¢]

(@]

o P, is the orthogonal projection df?(£2)3 onto L2.
B(w,w) = Py(w - Vw).
o A is the Stokes operator ohZ, D(A) = {u €

(W22 N W, ?)3V - u = 0}, Aw = —P,Aw for
everyw € D(A).

(¢]

o A% « > 0 are the fractional powers of the Stokes

operator.
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o e~ ¢t > 0, is the Stokes semigroup generated by
the Stokes operatot.

o \j,j € N, are the eigenvalues of. It is known
that {A;}52, is a non-decreasing sequence of pos-
itive numbers andim;_.., A\; = co. Let for every
J € N, w; be the eigenfunction ol associated with
Aj- Ifw =320 ajw;, let Pyw = 370 ajw;, Vn €
N.

In this paper we deal with strong global solutions of
(5) and (6). Letwy € L2(Q). A functionw from
the spaceC ([0, 00); L2(R2)) N C*((0,00); D(A)) is
a strong global solution of (5) and (6), if the equa-
tion (5) is fulfilled for everyt > 0 andw(0) = wy.
As was mentioned above it is not known whether or
not there exists a strong global solution of (5) and (6)
for every initial conditionwg even if wy is smooth.
On the other hand, substantial classes of initial con-
ditions vyielding strong global solutions of (5) and
(6) were described in several papers, see e.g. [1] or
[5]. So, the set of strong global solutions of (5) and
(6) is sufficiently abundant. Let us also remark that
every weak solutionv of (5) and (6) (for its defini-
tion see e.g. [11]) is strong and global on a time in-
terval [t, 00) if t9 = to(w) is sufficiently large, that
isw € O([tg,o0); L2(R)) N C(tg,0); D(A)). So,
the results presented in this paper can be easily formu-
lated also for weak solutions of (5) and (6).

Let us now explain the main problem to be solved
in this paper. To this purpose, let us consider for a
while the Stokes equations, that is the equation (5) is
replaced by the equation

dw
——i—Aw—O

g7 (7)

and solved together with (6). Suppose now for sim-
plicity that the sequence of the eigenvaluesias in-
creasing. lfwy = °; ajw; is an initial condition then
the solution of (7) and (6) can be written explicitly as
Z (6715 (8)

Jw],Vt>0

If a; # 0thenitis the first mode that prevails asymp-

totically in w for t — oo, by which we mean that
o I = PYw@l _
t=oe|[Prw(t)]

Generally, ifa; = as = -+ = a1 = 0 for some
k € N anday, # 0, then it is thek® mode that pre-
vails asymptotically inv for ¢t — oo:

(I = Brw®)|| + | Beaw(®) |

|
b 1 B

t—o0

=0.

We now ask, if similar results hold also for the strong
global solutions of (5) and (6). We will show in The-
orem 1, as our basic result, thatuf is such a solu-
tion, then there exists a unique mode associated with
w which prevails asymptotically in for ¢ — ooc.

The following theorem was proved in [6]: 16 is
a strong global solution of (5) and (6) then there exist
constants’y, C1, C, 6o > 0 such that|w(t)|||lw(t +
0)[I7t < Co, AV Pw(t)]||lw(t + )|~ < €1 and
|AY 2w(t)||||lw(t)|| =t < C forall § € [0, 8] andt >
0. We will see that the our results also lead to the
improvement of this theorem.

Let us now formulate precisely the main result of
this paper.

Theorem 1 Let wy # 0 and w be a strong global
solution of the Navier-Stokes equations (5) and (6).
Then there exists a unique= n(w) € N such that
An < Ant1 andifg € [0,5/4) then

1AP(I - Po)w(t)|

li =0. 9

A AP0 ©
fl € N,I > n, N < MNyp and ifw €
(0, min A;y1 — Ap, Ap) then even

AP = P)w(t)]| .

1 “t=0. 10

A A B ()] (10)
Let A, > A;. We denote by = k(w) the largest

natural number such that, < A,. (n — k is the di-
mension of the space of all eigenfunctions associated
to the eigenvalue,,). If & € [0, A1) then

AP (P = Pw()]| o
lim e =o00. (11
A AT B ()] ()
Further,
A% _ g
lim =\, (12)
t=oo Jw(t)]|
and ify € [0, 3] then

oo [ATw(t +0)]

uniformly on the set$d; ¢ € [0,
and

L]}, for everyL > 0

4%
50 TAPw(t + 0]

uniformly on the sef¢;¢ > 0}. Finally, if Cy > 1,
then there exist§, > 0 such that

[A%w(®)]
| A%w(t + )]

for everyt > 0 ando € [0, do.

—1 (14)

< C(), (15)



Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp142-150)

In the paper we will use the following theorem which
was presented in [9]:

Theorem 2 Lete € [0,1/4), wy € D(A*) and

wg # 0. Letw be a strong global solution of the
Navier-Stokes equations (5) and (6). Then there exist
Co > 1anddg € (0, 1) such that

|A = w (@)

< Cy, YVt >0, Vo € [0, dg].
Tott+8)] 0, o)

2 Proof of Theorem 1

We suppose in this section that is a fixed strong
global solution of (5) and (6) withvy # 0. We
want to use Theorem 2 straightforwardly in our proofs
and so we also suppose without lack of generality that
wo € D(AY®) for everye € (0,1/4).

Let us present at first a few propositions.
e If a € [0,1) then there exists; > 0 such that (see
[10])

| A% Aty < %IIUH, ¥t >0, Vue L2, (16)

e If v € [3/4,1) then there exists; > 0 such that
(see [6])

1B(u, w)|| < eof| AY?ul] [|A7ull, Vu € D(A).
(17)
e If s € (0,1), then there exist7,cs > 0 such that
(see [8])

crllullas,e < |A%]l < csflull2s,2, Yu € D(A?).
(18)
e See [4] for the following equality:
D(A®%) = (W30 L2, Vs €[0,1/4). (19)
e If s > 0 then there existgs > 0 such that (see [4])
| Poulls2 < collulls2, Yu € (W2)3. (20)

e Lets € [0,1] andn > 3/2. Then there existsy > 0
such that

lu- Vulls2 < collullye - [luflivs2  (21)

for everyu € (W™2)3 0 (Wi+s2)3 (see [4]).

Theorem 1 will be proved at the end of this sec-
tion as an immediate consequence of the following
several lemmas. In the proafslenotes a generic con-
stant that can change from line to line.

Lemma3 Lets € [0,5/4), a € [0, A1) and By > 0.
Let furthern € N, A, < A\p+1, and

B
|47 P e,

- 7 22
14Pw(®)] (e2)

lim inf
t—o0o

Then

. [JATPw(t)|

lim ——————— = 1.
=0 [ APw(t)]|
Proof: Let us put

AP - Pw()]
90 = BB (0)]

(23)

Lett > 0andd € (0, dg]. Firstly, it is clear that
|AP(I = P,)ePw(t)||
|| A8 Pye=A%w(t)||

Pn1=An)d |AP(T - B )w®)|
| AP Ppw(t) |

We will use the integral representationof
APw(t 4 0) = e APw(t) —

5
/ APe=AC=) B(w(t + s), w(t + s)) ds.
0

(24)

If J= fg | ABe=A0=9) B(w(t + s), w(t+s))|ds, we
have

IAP(I — Po)eMw(t)| + J

<
9t +9) S e Wu (D) = J

(25)

Let 5 € (0,1). Applying (16), (17) and Theorem 2,
we obtain

§1=r
1-p

where we also used the fact that> ||w(t)|| is a de-
creasing function on0, o). Lets € [1,5/4). We
choose > 0 such that? + ¢ < 5/4andy € (3/4,1)
and denote(s) = c¢(6 — s)¢ "L andp = 2(B+ £ — 1),
Using (16), (17), (19), (20), (21), (18) and Theorem 2,
we obtain

J<c 1A% w(@)|| ()],

d
Jg/o o(s) | APTELB(w(t + ), w(t + 5)|| ds

<

0
| el 1Bt + 9),w(t +5)) 2 ds <

é
c(s) |lw(t +s) - Vw(t + s)|lp2 ds <

1

c(s) [lw(t + s)ll2y.2
6

o(s) [|A7w(t + s)|| [ 4> w(t + )| ds <

5(:(5) lw(t + s)| [w(t + s) ds <

w(t+ 5)|[14e2 ds <

S— S— S— >—
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)
[ ets) b o) s <

)
| et 147w o) ds <
1wl o),

It follows from the assumption (22) that #fis suffi-
ciently large then

20t

1A% ()] < S B | A7 Poe™ P (t)].

If we denote

M = es? 25 B AnéuAf*P e Pw)| |w)|, (26)

we can continue in (25) and get

|AP(I — Py)e™ w()II+M
| AP Pre=w(t)]| — -

g(t)e”Cner=20 - g (t) e

1—co?lw(t)fext ~ 1 —cd?lw(t )II ot?

wheref) = min (1 — 3,&). Let us fixty > 0 such that

g(t+4) <

(27)

o~ Cns1=An)d

= <1
T T e fw(0) e~ ima)i

since [|w(t)[|e® < [Jw(0)[le=P1=)t we get for

everyt > t
" w(0) e~
T= 0w (0)]]e 0"

g(t+96) < apg(t) +

Now it is clear, thatim sup,_, . g(¢) < oo and
0 <limsupg(t+6) <
t—o00

ap limsup g(t) = agp limsup g(t + 9).
t—o00 t—o0

Therefore,
thm g(t) = 0.
and the proof of Lemma 3 is complete. a

Definition 4 Let3 € (0,5/4).
rem 2 we can define a positive numlgér=
the following way:

By the use of Theo-
C(B) in

| A%w(t)]|
lw®I

Having defined”' it is clear that there exists a unique
n = n(F) € N such that

C=C(f) =limsup ———— |

t—o0

N<oE) <N, (28)

Lemmab Letg € (0,5/4) andC = C(8) andn =
n(() be the numbers from Definition 4. Then

B8 AQB 02
i inf AT @1 (Q%H 25) -0
i—oo || APw(t)]| 02(An+1 A20%)

Proof: Let us define for every > 0

APt
o0 = @)
Then
L) 2 = | P ()2 + 1L — Poyuo()]? <
|45 P ()| 145 - Poyu(®)l
7 7,
Satul + S s -
1 n+1
23 23
HAﬂ’w(t)HQ (5( )/\ +1 ‘2"5(1 - 5(t))/\1 ) ‘
)‘1 )\n—i-l

So, it holds for every nonnegativehat

|APw (@) < )
w2 = — 8NN )

By the application ofim sup,_, ., to the last inequal-
ity and using the definition of’ we obtain

AN
SN+ (1

A28 )26
C? > limsup 55 ntl 25 =
t—00 5(t)An+1 (1 =6(t)A;
0‘)‘2+1 +(1- ))‘%ﬁ’

where we putv = liminf; .. d(¢). The assertion
of Lemma 5 now follows by elementary computation
from (29). O

Corollary 6 Let € (0,5/4) andn = n(3) be the
number from Definition 4. Then

AP P ()]
hm —_— = 1
t—oo [ ABu(t)]
Lemma?7 Let 3 € (0,5/4) andn = n(3) be the
number from Definition 4. Then
AB
limsup ————— 147w (®)] /\2.
t—oo  [Jw(®)l



Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp142-150)

Proof:

[APw(®)|* _ || AP Paw(t)||?
[Jw(t)[|? (| Pow(t)|?
|AP(I — Py)w(t)||? || APw(t)|]?
|| APw(t)||? [[w(t)]|?
< A28 it follows

n

Since || AP Pyw ()| /|| Paw(t)||?
from Lemma 3 and Theorem 2 that

Alw(t)|?
/\Ef < (0% = limsup ————— 14 < < \28
t—oo  [lw(®)[?
and the proof is complete. a

Lemma8 Let0 < v < 8 < 5/4 andn(3),n(y) be
the numbers from Definition 4. Theri3) = n(y).

Proof: We have

1AT(I = Pug)w(t)]| < e A7(I = Pog))w(t)l]

and

A7 Pygyw (A7 Pyayw(®)]).

1
Ol = =
Xa(s)

So,

IAY(T = Pogg)w®)] _
AT Py gyw ()]

I A = Pogg)w(®)]
") AP B guw(b)]

and it follows from Corollary 6 that

|AY(I — Pyg))w(t)|]
| AV Py zyw(t) ||

=0.

(30)

t—o0

Since also

A w(®)]? IIAWDn(mw(t)II?Jr

lw®[* — [ Bagyw®)]?

|AY (T — Proygg))w(t) 1 || V() |2
[ A7 w(B)]? lw®)]*

it follows by the application ofim sup,_, ., to the last

inequality and by the use of Lemma 7, (30) and The-

orem 2 that
v g [ATw@] _ v
Aay) = HRSIP T AN = Ao

Therefore,n(y) < n(3). Suppose now that(y) <
n(5). Then

HAﬁ(I Pn(’y)) ( >H2 _

(| ABw(t)||2
AP (Pyg) = Py w(®)]? N
| ABw(t)||2
|AP(I — Pyz))w(®)]? < 326-7)
| ABw(t)||2 = ")
[AY(Poig) = Priy)w(®)I? || ATw(t)|?
| A7w(t)||? | ABw(t)||2
|AP(I — Py))w(t)|?
| ABw(t)||?

and using Corollary 6 we get

|AP (I = Pogy)w(®) |

lim
| APw(t)]|?

t—o0

=0. (31)

Since also

[A%w(®)]* IIAﬁan)w(t)IIQJr

lw(®)]? 1Py w(®)]?

1A (I = Py w(t)l| || AP w(t)|>
[A%w(B)]]> lw®)|*

using (31) and Theorem 2 we arrive at the inequality

AP
4wl o
[w(@®)] !
Consequentlyn(3) < n(v) which is the contradic-

tion with the assumption that(3) > n(y). Thus,
n(B) = n(y) and Lemma 8 is proved. O

/\g(ﬁ) = limsup ————

t—o0

Definition 9 Lemma 8 shows that the numberde-
fined uniquely by the inequalities (28) for evetye
(0,5/4) does not depend oh In fact, it depends only
on the solutionw. So, to express this dependance, we
will write n(w) instead ofn(53).

Let Ay > A1 We will denote byk(w) the
largest natural number such that, ;) < A,(). It
is clear thatn(w) — k(w) is the (finite) dimension of
the space of all eigenfunctions associated to the eigen-
value,, ().

Lemma 10 Let 5 € [0,5/4) andn = n(w) be the
number from Definition 9. Then

B
AP

=1.
i [APu(D)]
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Proof: If 8 > 0 the proof follows immediately from
Corollary 6 and Lemma 8. I8 = 0 the proof is a
consequence of the inequality

I = Pow®)] _ 172 A2 = Po)w(®)|
[Baw@ll = 7" [JAV2Pw(B)]]
Lemma 11 Letn = n(w) andk = k(w) be the num-

bers from Definition 9 with\,, > \;. Leta € [0, \1).
Then

1A% Pw(®)] o

W) ¢ -0 G2

hm mf

for everys € [0,5/4).

Proof: Let us fix € (0,5/4) and suppose by contra-

diction that
A Pyw(®)]| o
hmlnfi “t > 0.
=00 || APw(t)|
We get by Lemma 3 that
(AP (t)
Iim —————— =1
too [APw(t)]
and equivalently
| AP (I = Po)w(t)|
=0. (33)
tooo[[APw(t)]
It is possible to write
A w(@®)|* _ A7 Prw(t)]?
2 < 2
[w(@)] [ Pew(t)]]
1A°(1 — Pw(®)|? [ A%w(®)|*
[ ABw(t)[|2 [w(t)]]?

By the application ofim sup,_, . to the last inequal-
ity and the use of Lemma 7, (33) and Theorem 2 we
obtain

[A%w @) _
lw(®] —

and it is the contradiction with the fact that < \,,.

)\g = limsup —————

t—o00

/\k

So, (32) holds for every € (0,5/4). Finally, let
6 =0.Then
[Psw(t)][e” _ [[AY2Pgw(t)]|e™” || AT 2w (t)]
[w (@) A 2w(t)| [w(®)]|

and if we now applytim inf;_,, to the last inequality
and use (32) fop = 1/2 and Theorem 2, we get

O )H
and Lemma 11 is proved also f@r= 0. O

Lemma 12 Letn = n(w) andk = k(w) be the num-
bers from Definition 9 with\,, > \;. Leta € [0, \1).
Then

| AP (P — Pr)w(t)|
AP Pew (t) ||

—at = 00,

lim
t—o0

for everys € [0,5/4).
Proof: Let us denote

[(P — Pr)w(t)]]
[ Pew ()]

g(t) =

Firstly, due to Lemmas 11 and 10

It implies that

1Peo® oo
[P~ Pw(@]

( P2 yﬂ:o
P - [Few@?

lim inf
t

lim inf
t—o0

and

lim sup g(t)e”* = oo. (34)

t—o0

We will prove now that

lim g(t)e " = co.

t—o00

(35)

Let us suppose by contradiction that (35) does not
hold. Due to (34) then there exists an increasing se-
quence(t; }32, of positive numbers an&” > 1 such
thatt; — oo for j — oo and

g(tj)e % = K, Vj € N.

Suppose now that for some sufficiently larg@vhich
will be specified later) we have

g(t)e™*

Choose somé € (0, o] (6o is from Theorem 2) and
use the integral identity (24) fgt = 0. We get

— K. (36)

|(Pn = Pe)e” ()| +J

<
9 +0) < e S — g
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whereJ = [ || B(w(t + s), w(t + s))]||ds. Since

0
J< c/ 143/ w(t + 5))|2ds <
0
0
¢ [ wtt+ s)lPds < eslw(r)
0

and by Lemma 10 and (36)

lw(®)]| < V2(|Paw(t)]| =
VAV 1 1| Pnlt)| <
V2V €20t K2 41 M| Ppe™

cK e || PV w(t)|),

Pw(t)] <

we have, using again (36) and denoting

M = cKe®6|| Pee™ *w(t)||[w(t)]| (37)
that
g(t +8) < 1P~ e ut)| + M
T P Pw@)| M T
(P — Pr)e”w(t)]| 1 n
[Pre=w(@)]| 1 —cKde|w(t)|
cKoe|[w(t)| g(ye Al

1 —cKdetlw(t)]| = 1 — cKdet||w(t)|
cKoew®)l|
1 —cKdet|w(t)|
e~(An=AR)deat 1 e5ect||w(t)||
1 — cKde|jw(t)]|

Multiplying the last inequality by —*(:+9) we get

gt + 8)e ol+d) <

7(a+)\n7)\k)6

e + cdl|w(t)]]

K
1 — cKoeot|w(t)|

If we now denote

e~ (@FAn=21)8 4 col|w(t)||

f(6) = 1— cKéeot|w(t)|

thenf(0) = 1andf’(0) = cKe® ||w(t)||+c|lw(t)]|—
(a + A — Ag). So, there exist¢* > 0 such that
f/(0) < 0fort > ¢*, which yields the existence of
91 = d1(t) > 0 such that

gt +06)e ) < K, (38)
for everys € (0,61). Letjo € N be such a number
thatt;, > t*. Then
(tjo+9) <K,

9(tjo +08)e™® (39)

for everyé € (0,01(t;,)). Letus put
T =sup {t > t39(€)e ™ < K, V& € [t3,,1]].
We have, due to (34) and (39), tH&te (¢,, c0) and
g(Te T = K.
T > t*, so using now (38) fot = T', we get
g(T + 8)e T+ < K, V5 € (0,01(T))

and it is the contradiction with the definition df.

Therefore, (35) is proved. Finally, for evefy €

[0,5/4)

|AP(P, — Pp)w(t)
| AP Prw(t)||

M (P — Pp)w(?)|
N Prw(t))|

lim H e—Oét Z

t—o0

| fat:

t—oo

and Lemma 12 is proved. a

Lemma 13 Letn = n(w) be the number from Defin-
ition 9. Then

[1A%w(®)]|
[w(®)]

Proof: Let\,,(,,) = A1. Itfollows then from Lemma 7
that

lim
t—o0

=X, v3el0,5/4).

4%t
]

and Lemma 13 is proved immediately. Suppose that
An(w) > A1. By the use of Lemma 10 we get

)\”13 < limsup ————+—

t—o0

1A%w(®)|* _
t=oo [lw(t)|?

| AP (P — Py)uw(t)|

| A7 Prw(t) ||
| B (®)|?

t—o0

N  XEOIE
L 145 = Pwe)?
S [P

It follows from Lemma 12 and Lemma 10 that the
first and third term from the right hand side of the
last equality equal to zero and by the application of
Lemma 12 the second term is equal )@5. So,
Lemma 13 is proved. a

If e € (0, \y,), then according to Lemma 13 there
existsty = to(e) > 0 such that

1A 2w(t)|”

Ay —e <
[[w(®)]]?

<A te,
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for everyt > . It follows from (5) that

d
Sl + 2 A 2w (B)|* = 0

and therefore
%Ilw(t)H2 +2( — 2)|lw(®)]* <0,
%Ilw(t)\l2 +2(A +2)|lw(®)]* > 0,
for everyt > ty. It leads to the inequalities
lw(t +8)|| < lw(t)|e” P9,
lw(t+8)[| > [lw(t)|e”PnF)?
and

e(An*E)é ||w( )H < e()\n+s)5 (40)

~ Jw(t+ )l ~ ’

which hold for everyt > t; and everny > 0. We will
now use (40) to derive the following lemmas.

Lemma 14 Letn = n(w) be the number from Defin-
ition 9. Then for every € [0,5/4)

A%l

im )\geA”‘s (41)
t=o0 [[w(t +6)[|

and

[APw®I _ rs

lim ——————— = 42
Ry e

uniformly on the set$s; § € [0, L]}, for everyL > 0.

Proof: By the application ofim;_,, in (40) we ob-
tain that

Ol s g

lim ,

=0 w(t + )|

uniformly on the set$4; 0 € [0, L]}, for everyL > 0.
Now we can write

[APw®)] _ [A%w@)]  [lw(@)]
[w(t+ )|l lw@  [lw(t+ )]
and
[ APw(t)]] :IlAﬁw()ll
[APw(t + 6) [w(@®)]
[w@®I  [lw(t+ )l

TG+ o) T4Pw(t + o)) “44)

and get (41) and (42) by the application of Lemma 13

and (43). O

Lemma 15 Let € [0,5/4). Then

L A%
=0 [APu(t+o)]

uniformly on the seft; ¢ > 0}.

Proof: By the application ofims_.q, in (40) we can
obtain that

@I

im =1, 45
5—04 |Jw(t + 9)|| (45)

uniformly on the set{t;t > 0}. Lete be an arbi-
trary small positive number. Due to (44), (45) and
Lemma 13 there exigf > 0 andd; > 0 such that

[A%w(t)]

e A
[ ABw(t +6)]|

<&,

for everyt > ¢; andé € [0,4;]. Because of the con-
tinuity of the function|| A%w(-)|| on [0, 00), we also
have the existence o6f such that

[A%w(®)]
1A% w(t + 3)|

1 <e,

for everyt € [0,¢1] andd € [0,d2]. If we putds =
min(dq, d2) then for every > 0 andé € [0, J3]

| A%w(#)]
—— — — 1| <e.
[APw(E + o) )
Sincee was arbitrary, Lemma 15 is proved. a

The following corollary of Lemma 15 is an im-
provement of Theorem 5 from [6].

Corollary 16 LetCy > 1 and s € [0,5/4).
there exist9, > 0 such that
[A%w(t)|
[APw(t +9)||

Then

< Cy, Yt >0, V9§ € [0, dp].

Lemma 17 Letn = n(w) be the number from Defin-
ition9,l € N, I >n, \; < Nqpandf € [0,5/4). If
w € (0, min (A\j+1 — A\p, Ap)) then

|AP(I — P)w(t)
| A8 Py (t)]]

lim et = 0.

t—o0
Proof: We proceed similarly as in the proof of
Lemma 3 up to the inequality (27). Instead of (27)
we get

IAP(T — Pw(t + )l _ [IA°( — P)w(t)]

1AZ Pyw(t +0)I| = (| AP Pyw(?)]
—(/\l+1—)\n)5 0
e ) (46)
1= cdfw(@)ll 1= cd®flw(®)]
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It follows now from Lemma 13 used fg¥ = 1/2 and
by some elementary computation that

tlim lw(t)|e“t =0, 47

where we used the assumption that. \,,. Let us put
g(t) = [|[A°(I - P)w(t)||/||A° Pw(t)|. Multiplying

now (46) bye*(*+9) we get the inequality

(Ww=(Ai41=2n))d
w(t+0) € wt
g(t+d)e S T @] g(t)e*" +
cd® |lw(t)[| et

L —cdlw(t)]’

which holds fort sufficiently big. Let us fixtg > 0
such thatyy = el Ar1=A)I0 /(169 ||w(to)||) < 1
and puts = c6?/(1 — c8%||w(to)||). So, we have

g(t + 6)e” ) < agg(t)e™ + l|w(t) e

for everyt > to. Applying nowlimsup,_,, to the
last inequality and using (47) we can conclude im-
mediately, thaim;_.., g(t)e** = 0. Lemma 17 is
proved.

Proof of Theorem 1 Let the assumptions of Theo-
rem 1 be satisfied, that is is a strong global solution
of the Navier-Stokes equations (5) and (6) with #

0. Sincew(t) € D(A)'*¢ for everye € [0,1/4)
and everyt € (0,00), we can suppose without lack
of generality thatwy € D(A)'*¢. Letn = n(w)
andk = k(w) be the numbers from Definition 9.
Then (9) is a consequence of Lemma 10, (10) is a

consequence of Lemma 17, (11) is a consequence of

Lemma 12, (12) is a consequence of Lemma 13, (13)

is a consequence of Lemma 14, (14) is a consequence

of Lemma 15 and (15) is a consequence of Corol-
lary 16. Theorem 1 is completely proved. a

3 Conclusion

Let us present, without proof, several additional re-
sults and one open problem. Lete N and), <
An+1. We defineGG,, € D(AY) in the following way:
wy € D(AY) belongs toG,, if and only if there ex-
ists a strong global solutiom of (5) and (6) such that
w(0) = wp andn(w) = n.

Itis possible to show thaf,, is not empty for any
n € N. In fact, everyG,, is infinite, since ifwy € G,
then evidentlyw(t) € G, for everyt > 0, wherew
is the strong global solutiow of (5) and (6) with the
initial conditionwg. Moreover, a certain subset 6f,
is a part of a Lipschitz manifold i (A7).

Is it possible to prove some results concerning the
"size” of the setsG,,? Is it true, for example, that

D(A")\ G,, = D(A") for n > 2?
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