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1 Introduction
Let T > 0 and letΩ ⊂ R3 be a smooth bounded do-
main. We deal with the homogeneous Navier-Stokes
initial–boundary value problem which is defined by
the equations

∂w

∂t
+ (w · ∇)w = −∇p + ν∆w, (1)

∇ · w = 0 (2)

in QT ≡ Ω× (0, T ), by the initial condition

w(x, 0) = w0(x), for everyx ∈ Ω (3)

and by the homogeneous Dirichlet boundary condi-
tions

w = 0 on∂Ω× (0, T ). (4)

The unknownw = (w1, w2, w3) stands for velocity,
p denotes pressure andν > 0 is the kinematic vis-
cosity. The equations (1) and (2) describe the flow
of a Newtonian viscous incompressible fluid (water)
and its evolution in time. The Navier-Stokes equa-
tions (1) express the conservation of momentum and
the equation of continuity (2) expresses the conserva-
tion of mass. Although the mathematical theory of the
Navier-Stokes equations is deeply elaborated, many
important questions still remain open. Especially, the
question of the global in time existence of a smooth
solution for arbitrarily large smooth initial data has not
yet been solved and it belongs to the most challenging
open problems od today’s theory of partial differen-
tial equations. The survey of main results and open
problems can be found e.g. in [3].

In this paper we deal with a special problem: we
study the decay of a strong global solution of (1) - (4)

for t approaching infinity. It is known that in this case
every such solution decreases exponentially to zero
for t 7→ ∞ (in some norms). So, the nonlinear term
(w · ∇)w is ”weak” for larget and does not have the
strength to influence the flow in any substantial way.
As a consequence, more precise information on the
decay of the solution can be obtained.

To describe our problem more precisely, we will
write the equations (1) - (4) in the following form (for
the explanation see e.g. [2], [3] or [11]):

dw

dt
+ Aw + B(w, w) = 0, (5)

w(0) = w0 (6)

and remind several basic concepts (see also [2], [3],
[10] or [11]) concerning the equations (5) and (6):

◦ L2 = L2(Ω) is the Lebegue space with the norm
‖ · ‖.

◦ W s,q = W s,q(Ω), s ≥ 0, q ≥ 2, are the Sobolev
spaces endowed with the norm‖ · ‖s,q.

◦ L2
σ = L2

σ(Ω) is a subspace ofL2(Ω)3 which con-
tains functionsu whose divergence equals zero inΩ
in the sense of distributions and(u · n)|∂Ω = 0 in
the sense of traces.

◦ Pσ is the orthogonal projection ofL2(Ω)3 ontoL2
σ.

◦ B(w, w) = Pσ(w · ∇w).

◦ A is the Stokes operator onL2
σ, D(A) = {u ∈

(W 2,2 ∩ W 1,2
0 )3;∇ · u = 0}, Aw = −Pσ∆w for

everyw ∈ D(A).

◦ Aα, α ≥ 0 are the fractional powers of the Stokes
operator.
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◦ e−At, t ≥ 0, is the Stokes semigroup generated by
the Stokes operatorA.

◦ λj , j ∈ N , are the eigenvalues ofA. It is known
that {λj}∞j=1 is a non-decreasing sequence of pos-
itive numbers andlimj→∞ λj = ∞. Let for every
j ∈ N , wj be the eigenfunction ofA associated with
λj . If w =

∑
j αjwj , let Pnw =

∑n
j=1 αjwj ,∀n ∈

N .

In this paper we deal with strong global solutions of
(5) and (6). Letw0 ∈ L2

σ(Ω). A function w from
the spaceC([0,∞);L2

σ(Ω)) ∩ C1((0,∞);D(A)) is
a strong global solution of (5) and (6), if the equa-
tion (5) is fulfilled for everyt > 0 andw(0) = w0.
As was mentioned above it is not known whether or
not there exists a strong global solution of (5) and (6)
for every initial conditionw0 even if w0 is smooth.
On the other hand, substantial classes of initial con-
ditions yielding strong global solutions of (5) and
(6) were described in several papers, see e.g. [1] or
[5]. So, the set of strong global solutions of (5) and
(6) is sufficiently abundant. Let us also remark that
every weak solutionw of (5) and (6) (for its defini-
tion see e.g. [11]) is strong and global on a time in-
terval [t0,∞) if t0 = t0(w) is sufficiently large, that
is w ∈ C([t0,∞);L2

σ(Ω)) ∩ C1(t0,∞);D(A)). So,
the results presented in this paper can be easily formu-
lated also for weak solutions of (5) and (6).

Let us now explain the main problem to be solved
in this paper. To this purpose, let us consider for a
while the Stokes equations, that is the equation (5) is
replaced by the equation

dw

dt
+ Aw = 0 (7)

and solved together with (6). Suppose now for sim-
plicity that the sequence of the eigenvalues ofA is in-
creasing. Ifw0 =

∑
j αjwj is an initial condition then

the solution of (7) and (6) can be written explicitly as

w(t) =
∑

j

αje
−λjtwj , ∀t ≥ 0. (8)

If α1 6= 0 then it is the first mode that prevails asymp-
totically in w for t →∞, by which we mean that

lim
t→∞

‖(I − P1)w(t)‖
‖P1w(t)‖ = 0.

Generally, ifα1 = α2 = · · · = αk−1 = 0 for some
k ∈ N andαk 6= 0, then it is thekth mode that pre-
vails asymptotically inw for t →∞:

lim
t→∞

‖(I − Pk)w(t)‖+ ‖Pk−1w(t)‖
‖(Pk − Pk−1)w(t)‖ = 0.

We now ask, if similar results hold also for the strong
global solutions of (5) and (6). We will show in The-
orem 1, as our basic result, that ifw is such a solu-
tion, then there exists a unique mode associated with
w which prevails asymptotically inw for t →∞.

The following theorem was proved in [6]: Ifw is
a strong global solution of (5) and (6) then there exist
constantsC0, C1, C, δ0 > 0 such that‖w(t)‖‖w(t +
δ)‖−1 ≤ C0, ‖A1/2w(t)‖‖w(t + δ)‖−1 ≤ C1 and
‖A1/2w(t)‖‖w(t)‖−1 ≤ C for all δ ∈ [0, δ0] andt ≥
0. We will see that the our results also lead to the
improvement of this theorem.

Let us now formulate precisely the main result of
this paper.

Theorem 1 Let w0 6= 0 and w be a strong global
solution of the Navier-Stokes equations (5) and (6).
Then there exists a uniquen = n(w) ∈ N such that
λn < λn+1 and ifβ ∈ [0, 5/4) then

lim
t→∞

‖Aβ(I − Pn)w(t)‖
‖AβPnw(t)‖ = 0. (9)

If l ∈ N , l ≥ n, λl < λl+1 and if ω ∈
(0,minλl+1 − λn, λn) then even

lim
t→∞

‖Aβ(I − Pl)w(t)‖
‖AβPnw(t)‖ eωt = 0. (10)

Let λn > λ1. We denote byk = k(w) the largest
natural number such thatλk < λn. (n − k is the di-
mension of the space of all eigenfunctions associated
to the eigenvalueλn). If α ∈ [0, λ1) then

lim
t→∞

‖Aβ(Pn − Pk)w(t)‖
‖AβPkw(t)‖ e−αt = ∞. (11)

Further,

lim
t→∞

‖Aβw(t)‖
‖w(t)‖ = λβ

n (12)

and ifγ ∈ [0, β] then

lim
t→∞

‖Aβw(t)‖
‖Aγw(t + δ)‖ = λβ−γ

n eλnδ (13)

uniformly on the sets{δ; δ ∈ [0, L]}, for everyL > 0
and

lim
δ→0+

‖Aβw(t)‖
‖Aβw(t + δ)‖ = 1 (14)

uniformly on the set{t; t ≥ 0}. Finally, if C0 > 1,
then there existsδ0 > 0 such that

‖Aβw(t)‖
‖Aβw(t + δ)‖ < C0, (15)

for everyt ≥ 0 andδ ∈ [0, δ0].
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In the paper we will use the following theorem which
was presented in [9]:

Theorem 2 Let ε ∈ [0, 1/4), w0 ∈ D(A1+ε) and
w0 6= 0. Let w be a strong global solution of the
Navier-Stokes equations (5) and (6). Then there exist
C0 > 1 andδ0 ∈ (0, 1) such that

‖A1+εw(t)‖
‖w(t + δ)‖ ≤ C0, ∀t ≥ 0, ∀δ ∈ [0, δ0].

2 Proof of Theorem 1
We suppose in this section thatw is a fixed strong
global solution of (5) and (6) withw0 6= 0. We
want to use Theorem 2 straightforwardly in our proofs
and so we also suppose without lack of generality that
w0 ∈ D(A1+ε) for everyε ∈ (0, 1/4).

Let us present at first a few propositions.
• If α ∈ [0, 1) then there existsc1 > 0 such that (see
[10])

‖Aαe−Atu‖ ≤ c1

tα
‖u‖, ∀t > 0, ∀u ∈ L2

σ. (16)

• If γ ∈ [3/4, 1) then there existsc2 > 0 such that
(see [6])

‖B(u, u)‖ ≤ c2‖A1/2u‖ ‖Aγu‖, ∀u ∈ D(Aγ).
(17)

• If s ∈ (0, 1), then there existc7, c8 > 0 such that
(see [8])

c7‖u‖2s,2 ≤ ‖Asu‖ ≤ c8‖u‖2s,2, ∀u ∈ D(As).
(18)

• See [4] for the following equality:

D(As) = (W 2s,2)3 ∩ L2
σ, ∀s ∈ [0, 1/4). (19)

• If s ≥ 0 then there existsc6 > 0 such that (see [4])

‖Pσu‖s,2 ≤ c6‖u‖s,2, ∀u ∈ (W s,2)3. (20)

• Let s ∈ [0, 1] andη > 3/2. Then there existsc9 > 0
such that

‖u · ∇u‖s,2 ≤ c9‖u‖η,2 · ‖u‖1+s,2 (21)

for everyu ∈ (W η,2)3 ∩ (W 1+s,2)3 (see [4]).
Theorem 1 will be proved at the end of this sec-

tion as an immediate consequence of the following
several lemmas. In the proofsc denotes a generic con-
stant that can change from line to line.

Lemma 3 Letβ ∈ [0, 5/4), α ∈ [0, λ1) andB0 > 0.
Let furthern ∈ N , λn < λn+1, and

lim inf
t→∞

‖AβPnw(t)‖
‖Aβw(t)‖ eαt ≥ B0. (22)

Then

lim
t→∞

‖AβPnw(t)‖
‖Aβw(t)‖ = 1.

Proof: Let us put

g(t) =
‖Aβ(I − Pn)w(t)‖
‖AβPnw(t)‖ . (23)

Let t ≥ 0 andδ ∈ (0, δ0]. Firstly, it is clear that

‖Aβ(I − Pn)e−Aδw(t)‖
‖AβPne−Aδw(t)‖ ≤

e(λn+1−λn)δ ‖Aβ(I − Pn)w(t)‖
‖AβPnw(t)‖ .

We will use the integral representation ofw:

Aβw(t + δ) = e−AδAβw(t)− (24)
∫ δ

0
Aβe−A(δ−s)B(w(t + s), w(t + s)) ds.

If J =
∫ δ
0 ‖Aβe−A(δ−s)B(w(t+s), w(t+s))‖ds, we

have

g(t + δ) ≤ ‖Aβ(I − Pn)e−Aδw(t)‖+ J

‖AβPne−Aδw(t)‖ − J
,(25)

Let β ∈ (0, 1). Applying (16), (17) and Theorem 2,
we obtain

J ≤ c
δ1−β

1− β
‖Aβw(t)‖ ‖w(t)‖,

where we also used the fact thatt 7→ ‖w(t)‖ is a de-
creasing function on[0,∞). Let β ∈ [1, 5/4). We
chooseξ > 0 such thatβ + ξ < 5/4 andγ ∈ (3/4, 1)
and denotec(s) = c(δ− s)ξ−1 and% = 2(β + ξ− 1).
Using (16), (17), (19), (20), (21), (18) and Theorem 2,
we obtain

J ≤
∫ δ

0
c(s) ‖Aβ+ξ−1B(w(t + s), w(t + s)‖ ds

≤
∫ δ

0
c(s) ‖B(w(t + s), w(t + s))‖%,2 ds ≤

∫ δ

0
c(s) ‖w(t + s) · ∇w(t + s)‖%,2 ds ≤

∫ δ

0
c(s) ‖w(t + s)‖2γ,2‖w(t + s)‖1+%,2 ds ≤

∫ δ

0
c(s) ‖Aγw(t + s)‖ ‖A3/4w(t + s)‖ ds ≤

∫ δ

0
c(s) ‖w(t + s)‖ ‖w(t + s)‖ ds ≤
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∫ δ

0
c(s) ‖w(t)‖ ‖w(t)‖ ds ≤

∫ δ

0
c(s) ‖Aβw(t)‖ ‖w(t)‖ ds ≤

c
δξ

ξ
‖Aβw(t)‖ ‖w(t)‖.

It follows from the assumption (22) that ift is suffi-
ciently large then

‖Aβw(t)‖ ≤ 2eαt

B0
eλnδ‖AβPne−Aδw(t)‖.

If we denote

M = cδθ 2eαt

B0
eλnδ‖AβPne−Aδw(t)‖ ‖w(t)‖, (26)

we can continue in (25) and get

g(t + δ) ≤ ‖Aβ(I − Pn)e−Aδw(t)‖+ M

‖AβPne−Aδw(t)‖ −M
≤

g(t)e−(λn+1−λn)δ

1− cδθ‖w(t)‖eαt
+

cδθ‖w(t)‖eαt

1− cδθ‖w(t)‖eαt
, (27)

whereθ = min (1− β, ξ). Let us fixt0 ≥ 0 such that

α0 =
e−(λn+1−λn)δ

1− cδθ‖w(0)‖e−(λ1−α)t0
< 1

Since ‖w(t)‖eαt ≤ ‖w(0)‖e−(λ1−α)t, we get for
everyt ≥ t0

g(t + δ) ≤ α0g(t) +
cδθ‖w(0)‖e−(λ1−α)t

1− cδθ‖w(0)‖e−(λ1−α)t
.

Now it is clear, thatlim supt→∞ g(t) < ∞ and

0 ≤ lim sup
t→∞

g(t + δ) ≤
α0 lim sup

t→∞
g(t) = α0 lim sup

t→∞
g(t + δ).

Therefore,

lim
t→∞ g(t) = 0.

and the proof of Lemma 3 is complete. ut
Definition 4 Let β ∈ (0, 5/4). By the use of Theo-
rem 2 we can define a positive numberC = C(β) in
the following way:

C = C(β) = lim sup
t→∞

‖Aβw(t)‖
‖w(t)‖ .

Having definedC it is clear that there exists a unique
n = n(β) ∈ N such that

λβ
n ≤ C(β) < λβ

n+1. (28)

Lemma 5 Let β ∈ (0, 5/4) andC = C(β) andn =
n(β) be the numbers from Definition 4. Then

lim inf
t→∞

‖AβPnw(t)‖
‖Aβw(t)‖ ≥ λ2β

1 (λ2β
n+1 − C2)

C2(λ2β
n+1 − λ2β

1 )
> 0.

Proof: Let us define for everyt ≥ 0

δ(t) =
‖AβPnw(t)‖2

‖Aβw(t)‖2
.

Then

‖w(t)‖2 = ‖Pnw(t)‖2 + ‖(I − Pn)w(t)‖2 ≤
‖AβPnw(t)‖2

λ2β
1

+
‖Aβ(I − Pn)w(t)‖2

λ2β
n+1

=

δ(t)

λ2β
1

‖Aβw(t)‖2 +
(1− δ(t))

λ2β
n+1

‖Aβw(t)‖2 =

‖Aβw(t)‖2

(
δ(t)λ2β

n+1 + (1− δ(t))λ2β
1

λ2β
1 λ2β

n+1

)
.

So, it holds for every nonnegativet that

‖Aβw(t)‖2

w(t)‖2
≥

(
λ2β

1 λ2β
n+1

δ(t)λ2β
n+1 + (1− δ(t))λ2β

1

)
.

By the application oflim supt→∞ to the last inequal-
ity and using the definition ofC we obtain

C2 ≥ lim sup
t→∞

λ2β
1 λ2β

n+1

δ(t)λ2β
n+1 + (1− δ(t))λ2β

1

=

λ2β
1 λ2β

n+1

αλ2β
n+1 + (1− α)λ2β

1

, (29)

where we putα = lim inft→∞ δ(t). The assertion
of Lemma 5 now follows by elementary computation
from (29). ut

Corollary 6 Let β ∈ (0, 5/4) andn = n(β) be the
number from Definition 4. Then

lim
t→∞

‖AβPnw(t)‖
‖Aβw(t)‖ = 1.

Lemma 7 Let β ∈ (0, 5/4) and n = n(β) be the
number from Definition 4. Then

lim sup
t→∞

‖Aβw(t)‖
‖w(t)‖ = λβ

n.
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Proof:

‖Aβw(t)‖2

‖w(t)‖2
≤ ‖AβPnw(t)‖2

‖Pnw(t)‖2
+

‖Aβ(I − Pn)w(t)‖2

‖Aβw(t)‖2

‖Aβw(t)‖2

‖w(t)‖2
.

Since‖AβPnw(t)‖2/‖Pnw(t)‖2 ≤ λ2β
n , it follows

from Lemma 3 and Theorem 2 that

λ2β
n ≤ C2 = lim sup

t→∞
‖Aβw(t)‖2

‖w(t)‖2
≤ λ2β

n

and the proof is complete. ut

Lemma 8 Let 0 < γ < β < 5/4 andn(β), n(γ) be
the numbers from Definition 4. Thenn(β) = n(γ).

Proof: We have

‖Aγ(I − Pn(β))w(t)‖ ≤ c‖Aβ(I − Pn(β))w(t)‖

and

‖AγPn(β)w(t)‖ ≥ 1

λβ−γ
n(β)

‖AβPn(β)w(t)‖.

So,

‖Aγ(I − Pn(β))w(t)‖
‖AγPn(β)w(t)‖ ≤

λβ−γ
n(β)

‖Aβ(I − Pn(β))w(t)‖
‖AβPn(β)w(t)‖

and it follows from Corollary 6 that

lim
t→∞

‖Aγ(I − Pn(β))w(t)‖
‖AγPn(β)w(t)‖ = 0. (30)

Since also

‖Aγw(t)‖2

‖w(t)‖2
≤ ‖AγPn(β)w(t)‖2

‖Pn(β)w(t)‖2
+

‖Aγ(I − Pn(β))w(t)‖2

‖Aγw(t)‖2

‖Aγw(t)‖2

‖w(t)‖2
,

it follows by the application oflim supt→∞ to the last
inequality and by the use of Lemma 7, (30) and The-
orem 2 that

λγ
n(γ) = lim sup

t→∞
‖Aγw(t)‖
‖w(t)‖ ≤ λγ

n(β).

Therefore,n(γ) ≤ n(β). Suppose now thatn(γ) <
n(β). Then

‖Aβ(I − Pn(γ))w(t)‖2

‖Aβw(t)‖2
=

‖Aβ(Pn(β) − Pn(γ))w(t)‖2

‖Aβw(t)‖2
+

‖Aβ(I − Pn(β))w(t)‖2

‖Aβw(t)‖2
≤ λ

2(β−γ)
n(β) ×

‖Aγ(Pn(β) − Pn(γ))w(t)‖2

‖Aγw(t)‖2

‖Aγw(t)‖2

‖Aβw(t)‖2
+

‖Aβ(I − Pn(β))w(t)‖2

‖Aβw(t)‖2

and using Corollary 6 we get

lim
t→∞

‖Aβ(I − Pn(γ))w(t)‖2

‖Aβw(t)‖2
= 0. (31)

Since also

‖Aβw(t)‖2

‖w(t)‖2
≤ ‖AβPn(γ)w(t)‖2

‖Pn(γ)w(t)‖2
+

‖Aβ(I − Pn(γ))w(t)‖2

‖Aβw(t)‖2

‖Aβw(t)‖2

‖w(t)‖2
,

using (31) and Theorem 2 we arrive at the inequality

λβ
n(β) = lim sup

t→∞
‖Aβw(t)‖
‖w(t)‖ ≤ λβ

n(γ).

Consequently,n(β) ≤ n(γ) which is the contradic-
tion with the assumption thatn(β) > n(γ). Thus,
n(β) = n(γ) and Lemma 8 is proved. ut
Definition 9 Lemma 8 shows that the numbern de-
fined uniquely by the inequalities (28) for everyβ ∈
(0, 5/4) does not depend onβ. In fact, it depends only
on the solutionw. So, to express this dependance, we
will write n(w) instead ofn(β).

Let λn(w) > λ1. We will denote byk(w) the
largest natural number such thatλk(w) < λn(w). It
is clear thatn(w) − k(w) is the (finite) dimension of
the space of all eigenfunctions associated to the eigen-
valueλn(w).

Lemma 10 Let β ∈ [0, 5/4) and n = n(w) be the
number from Definition 9. Then

lim
t→∞

‖AβPnw(t)‖
‖Aβw(t)‖ = 1.
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Proof: If β > 0 the proof follows immediately from
Corollary 6 and Lemma 8. Ifβ = 0 the proof is a
consequence of the inequality

‖(I − Pn)w(t)‖
‖Pnw(t)‖ ≤ cλ1/2

n

‖A1/2(I − Pn)w(t)‖
‖A1/2Pnw(t)‖ .

Lemma 11 Letn = n(w) andk = k(w) be the num-
bers from Definition 9 withλn > λ1. Letα ∈ [0, λ1).
Then

lim inf
t→∞

‖AβPkw(t)‖
‖Aβw(t)‖ eαt = 0, (32)

for everyβ ∈ [0, 5/4).

Proof: Let us fixβ ∈ (0, 5/4) and suppose by contra-
diction that

lim inf
t→∞

‖AβPkw(t)‖
‖Aβw(t)‖ eαt > 0.

We get by Lemma 3 that

lim
t→∞

‖AβPkw(t)‖
‖Aβw(t)‖ = 1

and equivalently

lim
t→∞

‖Aβ(I − Pk)w(t)‖
‖Aβw(t)‖ = 0. (33)

It is possible to write

‖Aβw(t)‖2

‖w(t)‖2
≤ ‖AβPkw(t)‖2

‖Pkw(t)‖2
+

‖Aβ(I − Pk)w(t)‖2

‖Aβw(t)‖2

‖Aβw(t)‖2

‖w(t)‖2
.

By the application oflim supt→∞ to the last inequal-
ity and the use of Lemma 7, (33) and Theorem 2 we
obtain

λβ
n = lim sup

t→∞
‖Aβw(t)‖
‖w(t)‖ ≤ λβ

k

and it is the contradiction with the fact thatλk < λn.
So, (32) holds for everyβ ∈ (0, 5/4). Finally, let
β = 0. Then

‖Pkw(t)‖eαt

‖w(t)‖ ≤ c
‖A1/2Pkw(t)‖eαt

‖A1/2w(t)‖
‖A1/2w(t)‖
‖w(t)‖

and if we now applylim inft→∞ to the last inequality
and use (32) forβ = 1/2 and Theorem 2, we get

lim inf
t→∞

‖Pkw(t)‖
‖w(t)‖ eαt = 0

and Lemma 11 is proved also forβ = 0. ut

Lemma 12 Letn = n(w) andk = k(w) be the num-
bers from Definition 9 withλn > λ1. Letα ∈ [0, λ1).
Then

lim
t→∞

‖Aβ(Pn − Pk)w(t)‖
‖AβPkw(t)‖ e−αt = ∞,

for everyβ ∈ [0, 5/4).

Proof: Let us denote

g(t) =
‖(Pn − Pk)w(t)‖

‖Pkw(t)‖ .

Firstly, due to Lemmas 11 and 10

lim inf
t→∞

‖Pkw(t)‖
‖Pnw(t)‖eαt =

lim inf
t→∞

‖Pkw(t)‖eαt

‖w(t)‖
‖w(t)‖
‖Pnw(t)‖ = 0.

It implies that

lim inf
t→∞

‖Pkw(t)‖
‖(Pn − Pk)w(t)‖eαt =

lim inf
t→∞

(
‖Pkw(t)‖2e2αt

‖Pnw(t)‖2 − ‖Pkw(t)‖2

)1/2

= 0

and

lim sup
t→∞

g(t)e−αt = ∞. (34)

We will prove now that

lim
t→∞ g(t)e−αt = ∞. (35)

Let us suppose by contradiction that (35) does not
hold. Due to (34) then there exists an increasing se-
quence{tj}∞j=1 of positive numbers andK > 1 such
thattj →∞ for j →∞ and

g(tj)e−αtj = K, ∀j ∈ N.

Suppose now that for some sufficiently larget (which
will be specified later) we have

g(t)e−αt = K. (36)

Choose someδ ∈ (0, δ0] (δ0 is from Theorem 2) and
use the integral identity (24) forβ = 0. We get

g(t + δ) ≤ ‖(Pn − Pk)e−Aδw(t)‖+ J

‖Pke−Aδw(t)‖ − J
,
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whereJ =
∫ δ
0 ‖B(w(t + s), w(t + s))‖ds. Since

J ≤ c

∫ δ

0
‖A3/4w(t + s))‖2ds ≤

c

∫ δ

0
‖w(t + s)‖2ds ≤ cδ‖w(t)‖2

and by Lemma 10 and (36)

‖w(t)‖ ≤
√

2‖Pnw(t)‖ =√
2
√

e2αtK2 + 1‖Pkw(t)‖ ≤√
2
√

e2αtK2 + 1 eλkδ‖Pke
−Aδw(t)‖ ≤

cKeαt‖Pke
−Aδw(t)‖,

we have, using again (36) and denoting

M = cKeαtδ‖Pke
−Aδw(t)‖‖w(t)‖ (37)

that

g(t + δ) ≤ ‖(Pn − Pk)e−Aδw(t)‖+ M

‖Pke−Aδw(t)‖ −M
≤

‖(Pn − Pk)e−Aδw(t)‖
‖Pke−Aδw(t)‖

1
1− cKδeαt‖w(t)‖ +

cKδeαt‖w(t)‖
1− cKδeαt‖w(t)‖ ≤

g(t)e−(λn−λk)δ

1− cKδeαt‖w(t)‖ +

cKδeαt‖w(t)‖
1− cKδeαt‖w(t)‖ =

K
e−(λn−λk)δeαt + cδeαt‖w(t)‖

1− cKδeαt‖w(t)‖ .

Multiplying the last inequality bye−α(t+δ), we get

g(t + δ)e−α(t+δ) ≤

K
e−(α+λn−λk)δ + cδ‖w(t)‖

1− cKδeαt‖w(t)‖ .

If we now denote

f(δ) =
e−(α+λn−λk)δ + cδ‖w(t)‖

1− cKδeαt‖w(t)‖ ,

thenf(0) = 1 andf ′(0) = cKeαt‖w(t)‖+c‖w(t)‖−
(α + λn − λk). So, there existst∗ > 0 such that
f ′(0) < 0 for t ≥ t∗, which yields the existence of
δ1 = δ1(t) > 0 such that

g(t + δ)e−α(t+δ) < K, (38)

for everyδ ∈ (0, δ1). Let j0 ∈ N be such a number
thattj0 ≥ t∗. Then

g(tj0 + δ)e−α(tj0+δ) < K, (39)

for everyδ ∈ (0, δ1(tj0)). Let us put

T = sup
{
t ≥ tj0 ; g(ξ)e−αξ ≤ K, ∀ξ ∈ [tj0 , t]

}
.

We have, due to (34) and (39), thatT ∈ (tj0 ,∞) and

g(T )e−αT = K.

T ≥ t∗, so using now (38) fort = T , we get

g(T + δ)e−α(T+δ) < K, ∀δ ∈ (0, δ1(T ))

and it is the contradiction with the definition ofT .
Therefore, (35) is proved. Finally, for everyβ ∈
[0, 5/4)

lim
t→∞

‖Aβ(Pn − Pk)w(t)‖
‖AβPkw(t)‖ e−αt ≥

lim
t→∞

λβ
n‖(Pn − Pk)w(t)‖

λβ
k‖Pkw(t)‖

e−αt = ∞

and Lemma 12 is proved. ut
Lemma 13 Letn = n(w) be the number from Defin-
ition 9. Then

lim
t→∞

‖Aβw(t)‖
‖w(t)‖ = λβ

n, ∀β ∈ [0, 5/4).

Proof: Letλn(w) = λ1. It follows then from Lemma 7
that

λβ
1 ≤ lim sup

t→∞
‖Aβw(t)‖
‖w(t)‖ = λβ

1

and Lemma 13 is proved immediately. Suppose that
λn(w) > λ1. By the use of Lemma 10 we get

lim
t→∞

‖Aβw(t)‖2

‖w(t)‖2
= lim

t→∞
‖AβPkw(t)‖2

‖Pnw(t)‖2
+

lim
t→∞

‖Aβ(Pn − Pk)w(t)‖2

‖Pnw(t)‖2
+

lim
t→∞

‖Aβ(I − Pn)w(t)‖2

‖Pnw(t)‖2
.

It follows from Lemma 12 and Lemma 10 that the
first and third term from the right hand side of the
last equality equal to zero and by the application of
Lemma 12 the second term is equal toλ2β

n . So,
Lemma 13 is proved. ut

If ε ∈ (0, λn), then according to Lemma 13 there
existst0 = t0(ε) > 0 such that

λn − ε ≤ ‖A1/2w(t)‖2

‖w(t)‖2
≤ λn + ε,
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for everyt ≥ t0. It follows from (5) that

d

dt
‖w(t)‖2 + 2‖A1/2w(t)‖2 = 0

and therefore

d

dt
‖w(t)‖2 + 2(λn − ε)‖w(t)‖2 ≤ 0,

d

dt
‖w(t)‖2 + 2(λn + ε)‖w(t)‖2 ≥ 0,

for everyt ≥ t0. It leads to the inequalities

‖w(t + δ)‖ ≤ ‖w(t)‖e−(λn−ε)δ,

‖w(t + δ)‖ ≥ ‖w(t)‖e−(λn+ε)δ

and

e(λn−ε)δ ≤ ‖w(t)‖
‖w(t + δ)‖ ≤ e(λn+ε)δ, (40)

which hold for everyt ≥ t0 and everyδ > 0. We will
now use (40) to derive the following lemmas.

Lemma 14 Letn = n(w) be the number from Defin-
ition 9. Then for everyβ ∈ [0, 5/4)

lim
t→∞

‖Aβw(t)‖
‖w(t + δ)‖ = λβ

neλnδ (41)

and

lim
t→∞

‖Aβw(t)‖
‖Aβw(t + δ)‖ = eλnδ, (42)

uniformly on the sets{δ; δ ∈ [0, L]}, for everyL > 0.

Proof: By the application oflimt→∞ in (40) we ob-
tain that

lim
t→∞

‖w(t)‖
‖w(t + δ)‖ = eλnδ, (43)

uniformly on the sets{δ; δ ∈ [0, L]}, for everyL > 0.
Now we can write

‖Aβw(t)‖
‖w(t + δ)‖ =

‖Aβw(t)‖
‖w(t)‖

‖w(t)‖
‖w(t + δ)‖

and

‖Aβw(t)‖
‖Aβw(t + δ)‖ =

‖Aβw(t)‖
‖w(t)‖ ×

‖w(t)‖
‖w(t + δ)‖

‖w(t + δ)‖
‖Aβw(t + δ)‖ (44)

and get (41) and (42) by the application of Lemma 13
and (43). ut

Lemma 15 Letβ ∈ [0, 5/4). Then

lim
δ→0+

‖Aβw(t)‖
‖Aβw(t + δ)‖ = 1,

uniformly on the set{t; t ≥ 0}.
Proof: By the application oflimδ→0+ in (40) we can
obtain that

lim
δ→0+

‖w(t)‖
‖w(t + δ)‖ = 1, (45)

uniformly on the set{t; t ≥ 0}. Let ε be an arbi-
trary small positive number. Due to (44), (45) and
Lemma 13 there existt1 > 0 andδ1 > 0 such that

∣∣∣∣∣
‖Aβw(t)‖

‖Aβw(t + δ)‖ − 1

∣∣∣∣∣ < ε,

for everyt ≥ t1 andδ ∈ [0, δ1]. Because of the con-
tinuity of the function‖Aβw(·)‖ on [0,∞), we also
have the existence ofδ2 such that

∣∣∣∣∣
‖Aβw(t)‖

‖Aβw(t + δ)‖ − 1

∣∣∣∣∣ < ε,

for everyt ∈ [0, t1] andδ ∈ [0, δ2]. If we put δ3 =
min(δ1, δ2) then for everyt ≥ 0 andδ ∈ [0, δ3]

∣∣∣∣∣
‖Aβw(t)‖

‖Aβw(t + δ)‖ − 1

∣∣∣∣∣ < ε.

Sinceε was arbitrary, Lemma 15 is proved. ut
The following corollary of Lemma 15 is an im-

provement of Theorem 5 from [6].

Corollary 16 Let C0 > 1 and β ∈ [0, 5/4). Then
there existsδ0 > 0 such that

‖Aβw(t)‖
‖Aβw(t + δ)‖ < C0, ∀t ≥ 0, ∀δ ∈ [0, δ0].

Lemma 17 Letn = n(w) be the number from Defin-
ition 9, l ∈ N , l ≥ n, λl < λl+1 andβ ∈ [0, 5/4). If
ω ∈ (0,min (λl+1 − λn, λn)) then

lim
t→∞

‖Aβ(I − Pl)w(t)‖
‖AβPnw(t)‖ eωt = 0.

Proof: We proceed similarly as in the proof of
Lemma 3 up to the inequality (27). Instead of (27)
we get

‖Aβ(I − Pl)w(t + δ)‖
‖AβPnw(t + δ)‖ ≤ ‖Aβ(I − Pl)w(t)‖

‖AβPnw(t)‖ ×

e−(λl+1−λn)δ

1− cδθ‖w(t)‖ +
cδθ‖w(t)‖

1− cδθ‖w(t)‖ , (46)
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It follows now from Lemma 13 used forβ = 1/2 and
by some elementary computation that

lim
t→∞ ‖w(t)‖eωt = 0, (47)

where we used the assumption thatω < λn. Let us put
g(t) = ‖Aβ(I−Pl)w(t)‖/‖AβPnw(t)‖. Multiplying
now (46) byeω(t+δ) we get the inequality

g(t + δ)eω(t+δ) ≤ e(ω−(λl+1−λn))δ

1− cδθ‖w(t)‖ g(t)eωt +

cδθ‖w(t)‖eωt

1− cδθ‖w(t)‖ ,

which holds fort sufficiently big. Let us fixt0 ≥ 0
such thatα0 = e[ω−(λl+1−λn)]δ/(1−cδθ‖w(t0)‖) < 1
and putκ = cδθ/(1− cδθ‖w(t0)‖). So, we have

g(t + δ)eω(t+δ) ≤ α0g(t)eω(t) + κ‖w(t)‖eωt

for every t ≥ t0. Applying now lim supt→∞ to the
last inequality and using (47) we can conclude im-
mediately, thatlimt→∞ g(t)eωt = 0. Lemma 17 is
proved.
Proof of Theorem 1 Let the assumptions of Theo-
rem 1 be satisfied, that isw is a strong global solution
of the Navier-Stokes equations (5) and (6) withw0 6=
0. Sincew(t) ∈ D(A)1+ε for every ε ∈ [0, 1/4)
and everyt ∈ (0,∞), we can suppose without lack
of generality thatw0 ∈ D(A)1+ε. Let n = n(w)
and k = k(w) be the numbers from Definition 9.
Then (9) is a consequence of Lemma 10, (10) is a
consequence of Lemma 17, (11) is a consequence of
Lemma 12, (12) is a consequence of Lemma 13, (13)
is a consequence of Lemma 14, (14) is a consequence
of Lemma 15 and (15) is a consequence of Corol-
lary 16. Theorem 1 is completely proved. ut

3 Conclusion

Let us present, without proof, several additional re-
sults and one open problem. Letn ∈ N andλn <
λn+1. We defineGn ⊂ D(Aγ) in the following way:
w0 ∈ D(Aγ) belongs toGn if and only if there ex-
ists a strong global solutionw of (5) and (6) such that
w(0) = w0 andn(w) = n.

It is possible to show thatGn is not empty for any
n ∈ N . In fact, everyGn is infinite, since ifw0 ∈ Gn

then evidentlyw(t) ∈ Gn for everyt ≥ 0, wherew
is the strong global solutionw of (5) and (6) with the
initial conditionw0. Moreover, a certain subset ofGn

is a part of a Lipschitz manifold inD(Aγ).
Is it possible to prove some results concerning the

”size” of the setsGn? Is it true, for example, that
D(Aγ) \Gn = D(Aγ) for n ≥ 2?
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