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Abstract: A three dimensional (3-D) boundary element methodology (BEM) is presented for the static analysis 
of three-dimensional solids and structures on the basis of a combination of the gradient elastic theories of 
Mindlin and Aifantis enhanced with surface energy terms, as described by Vardoulakis and co-workers. The 
gradient elastic fundamental solution as well as the boundary integral representations for displacements and their 
normal derivatives are presented. Quadratic quadrilateral boundary elements are employed and the singular 
integrals are numerically computed using advanced algorithms. A numerical example demonstrates the accuracy 
of the above methodology.  
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1 Introduction 

The effect of microstructure on the macroscopic 
description of the mechanical behavior of a linear 
elastic material can be adequately taken into account 
with the aid of higher-order strain gradient theories. 
Among those who have developed such theories one 
can mention  Mindlin[1, 2] , Aifantis[3, 4] and 
Vardoulakis and Sulem[5]. Although Mindlin’s 
theory can be considered as the most general and 
comprehensive gradient elastic theory appearing to 
date in the literature, the simpler theories of Aifantis 
and Vardoulakis have been successfully used in the 
past to eliminate singularities or discontinuities of 
classical elasticity theory and to demonstrate their 
ability to capture size and edge effects, necking in 
bars, nano-structured materials behavior and wave 
dispersion in cases where this was not possible in the 
classical elasticity framework. However, use of the 
gradient elastic theory in boundary value problems 
increases considerably the solution difficulties in 

comparison with the case of classical elasticity. For 
this reason, the need of using numerical methods for 
the treatment of those problems is apparent. Shu et 
al[6] and Amanatidou and Aravas[7] have used the 
finite element method (FEM) for solving 
two-dimensional elastostatic problems in the 
framework of the general theories of Mindlin, while 
Polyzos et al[8] employing the boundary element 
method (BEM) have solved three dimensional 
elastostatic problems in the context of the simple 
strain-gradient theory proposed by Aifantis and 
co-workers. In the present work a direct BEM for 
solving three-dimensional (3D) elastostatic problems 
in the framework of the gradient with surface energy 
theory, described in the book of Vardoulakis and 
Sulem[5], is addressed. The paper is structured as 
follows: The constitutive equations and the classical 
as well as the non-classical boundary conditions of 
the problem are presented in the next section. The 
integral representation of the problem, for both cases 
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of smooth and non-smooth boundaries, is given in 
section 3. In section 4, the numerical implementation 
of the method and the BEM solution procedure are 
illustrated. Finally, in section 5 a numerical example 
that demonstrates the high accuracy of the method is 
given. 
 
 

2 Constitutive Equations-Boundary 
Conditions 

In this section the equation of equilibrium and the 
corresponding boundary conditions that should be 
satisfied by any linear elastic material with 
microstructure described by the gradient elastostatic 
theory with surface energy [9] are presented in brief. 
Consider a three dimensional linear elastic body with 
microstructure of volume V surrounded by a surface 
S. The geometry of this body is described with the aid 
of the unit normal vector n  on S and a Cartesian 
co-ordinate system OX

ˆ
1X2X3 with its origin located 

interior to V. For this body, Mindlin[1], considering 
isotropic materials and a special case of his theory 
where the macroscopic strain coincides with the 
micro-deformation, defines the variation of the 
potential energy-density as follows 
 

eμeτ ~~~ :~ δδδ ∇+= MW                                                     (1)  
 

where τ~  is the Cauchy stress tensor being in duality 
with the macroscopic strain tensor e~  and  is a 
third order tensor, called by Mindlin double stress 
tensor, which is dual to the strain gradient 

μ~

e~∇ . The 
two and three dots in Eq. (1) indicate inner product 
between tensors of second and third order, 
respectively. Considering the variation of the 
potential energy-density (1) over V and performing 
some algebra [8], one obtains the following gradient 
elastic equation of equilibrium 
 

0fμτ =+⋅∇−⋅∇ )~~(                                                (2) 
 
accompanied by the classical boundary conditions 
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where P0, u0, R0, q0 and E0 denote prescribed values. 
The vector f  in Eq. (2) represents body forces while 
The symbols ⊗  and S∇  idicate dyadic product and 

surface gradient. The double lines o  in Eq. (4) stand 
for the difference of the values of the function o  
taken at two surfaces S1 and S2, which form a corner 
across a line C. Mindlin relates the double stress 
tensor  with the strain gradient μ~ e~∇  through the 
classical Lame’ constantsλ ,μ and five more 
material constants. An alternative and 
mathematically more tractable theory is that 
proposed by Vardoulakis and Sulem[5] where the 
double stresses are correlated to the space derivatives 
as follows 
 

( ) ( )οο τττ ~ ~~
~
∇⋅+= l                                                      (5) 

 
( ) ( )οο ττμ ~~ ~ 2

~
∇+⊗= gl

                                             (6) 
           

( ) ( )Ieeτ ~ ~ ~ 2~ trλμο +=                                             (7) 
 

[ ]∇+∇= uue
2
1~ , ue ⋅∇= ~ tr                                  (8) 

 

where  is the volumetric energy strain gradient 2g
coefficient, the only constant that relates the 
microstructure, and  is the surface energy strain 

~
l

gradient vector coefficient. I~  represents unit tensor 
and  displacements. Adopting the above strain u
gradient theory with surface energy and inserting the 
constitutive Eqs (5)-(8) into Eq. (2) one obtains the 
equation of equilibrium of a gradient elastic 
continuum with surface energy in terms of the 
displacement field  in the form u
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3 Boundary integral representation of 
a 3-D Gradient elastic problem with 
surface energy  
As it is proved in [8], the integral representation of 
the problem described in the previous section is  
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where the vector p~  represents the surface traction 
vector given by Eq. (3), R  is the double traction 
vector given in Eq. (4) and ( yxu* , )~  is the 
fundamental solution of Eq. (9) that, as it is shown in 
[8], has the following form 
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where ν is the Poisson ratio, r  the unit vector in the 
direction  and Χ, Ψ are scalar functions 
given by the relations 
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For the gradient coefficient g being equal to zero, one 
can easily prove that  
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 are the expressions of the 3-D classical elastostatic 
fundamental solution[10]. Also, utilising the Taylor 
expansion 
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it is easy to prove one[8] that both functions Χ and Ψ 
given by Eqs (12), are regular with respect to the 
distance  according to the asymptotic 
relations 

0→r
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The integral representation (10) conserns smooth 
boundaries. In case where the boundary is non 
smooth consisting of two smooth surfaces S1 and S2 
intersecting across the closed line C, then the integral 
representation (10) is replaced by the following one 
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where ( )xc~  is the well-known jump tensor[10], and E  
is the vector defined in Eq. (4). All the kernels 
appearing in the integral Eqs. (10) and (16) are given 
explicity in [11]. Observing Eq. (21), one realizes 
that this equation contains two unknown vector 
fields, ( )xu  and ( )

n∂
∂ xu . For example, for the case of 

the traction field ( )xp  prescribed on  (classical 
boundary condition) as well as the fields 

S
( )xR  and 

( )xE  prescribed on  (non-classical boundary 
conditions), the unknown vector  fields in Eq. (16) 
are two, 

S

( )xu  and ( )
n∂

∂ xu . Thus, the evaluation of the 

unknown fields ( )xu  and ( )
n∂

∂ xu  requires the existance 

of one more integral equation. This integral equation 
is obtained by applying the operator xn∂∂  on Eq. 
(16) and has the form 
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The kernels appearing in Eq. (17) are given explicitly 
in [11]. The integral Eqs (16) and (17) accompanied 
by the classical and non-classical boundary 
conditions form the integral representation of any 
gradient elastic boundary value problem. 
 
 

4 BEM Solution procedure 
The boundary element methodology presented in this 
section concerns 3D elastostatics problems of 
structures with smooth surface S. Thus, according to 
Eqs (16) and (17) the integral representation of the 
problem takes the form  
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The goal of the Boundary Element methodology is to 
solve numerically the well-posed boundary value 
problem constituted by the system of two integral 
equations (18) and (19) and the boundary conditions 
(Eqs (3) and (4)). To this end the smooth surface S is 
discretised into E eight-noded quadrilateral and/or 
six-noded triangular quadratic continuous 
isoparametric boundary elements. For a nodal point k 
the discretized integral equations (18) and (19) have 
the following form 

  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

∑∑∫ ∫

∑∑∫ ∫

∑∑∫ ∫

∑∑∫ ∫

= = − −

= = − −

= = − −

= = − −

⋅

+⋅

=⋅

+⋅+

E

e

eA

a

e
a

aek

E

e

eA

a

e
a

aek

E

e

eA

a

e
a

aek

E

e

eA

a

e
a

aekk

JN

JN

JN

JN

1 1

1

1

1

1
21

1 1

1

1

1

1
21

*

1 1

1

1

1

1
21

*

1 1

1

1

1

1
21

*

dd,~

dd,~

dd,~

dd,~
2
1

Ryxq

pyxu

qyxR

uyxpxu

* ξξ

ξξ

ξξ

ξξ

      

                                                                              (20) 

( ) ( )( )

( )( )

( )( )

( )( )

∑∑∫ ∫

∑∑∫ ∫

∑∑∫ ∫

∑∑∫ ∫

= = − −

= = − −

= = − −

= = − −

⋅
∂

∂

+⋅
∂

∂

=⋅
∂

∂
+

⋅
∂

∂
+

E

e

eA

a

e
a

a
ek

E

e

eA

a

e
a

a
ek

E

e

eA

a

e
a

a
ek

E

e

eA

a

e
a

a
ek

k

JN
n

JN
n

JN
n

JN
n

1 1

1

1

1

1
21

1 1

1

1

1

1
21

*

1 1

1

1

1

1
21

*

1 1

1

1

1

1
21

*

dd,~

dd,~

dd,~

dd,~

2
1

Ryxq

pyxu

qyxR

uyxpxq

x

*

x

x

x

ξξ

ξξ

ξξ

ξξ

       

 

where 
y

uq
n∂
∂

= , A(e) is the number of nodes of the 

current element e with ( )21,ξξey  (A = 8 or 6 for 
quadrilateral or triangular elements, respectively), 

 (a = 1, 2,…, A) the shape functions of a 
typical quadrilateral or triangular quadratic element, 

( 21,ξξaN )

)( 21,ξξJ  the corresponding Jacobian magnitude of 
the transformation from the global to the local 
co-ordinate system ξ1, ξ2 and , ,  and  
are the nodal values of the corresponding field 
functions. Adopting now a global numbering for the 

nodes, each pair (e, a) is associated to a number β and 
the integral equations (20) are written as 
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where L is the total number of nodes. Collocating Eqs 
(21) at all nodal points L, one obtains the following 
linear system of algebraic equations 
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where matrices H~ , K~ , S~ , T~ , G~ , L~ , and 
contain all the submatrices given by Eqs. (20), 

respectively. Applying the boundary conditions (Eqs 
(3) and (4)) and rearranging Eq. (22) one produces 
the final linear system of algebraic equations of the 
form 

V~

W~

BXA =⋅~
                                                                (23) 

where the vectors X and B contain all the unknown 
and known nodal components of the boundary fields. 
In the present work the singular and hypersingular 
integrals appeared in Eqs (20) are evaluated with 
high accuracy applying a methodology for direct 
treatment in unified manner of CPV and 
hypersingular integrals proposed by [12] and [13]. 
 
 

5 Numerical examples 
In this section two characteristic problems with 
known analytical solutions are presented to illustrate 
the accuracy of the proposed 3-D BEM.  
 
5.1 Radial deformation of a sphere 
Consider a gradient elastic with surface energy solid 
sphere with radius α subjected to an external uniform 
radial deformation and assume that the double 
surface traction vanishes at the boundary, i.e., 
( ) 0uarur ==                                                             (24) 

0=
=ar

R                                                                      (25) 

where ur is the radial displacement, R is the double 
surface traction and r the distance from the center of 
the sphere. This problem can be easily solved 
analytically and its solution is presented in [11], i.e., 
( ) ( )rFcrcrur 21 +=                                                 (26) 

where 

( ) ( ) ( )
r

grg
r

grgrF coshsinh
2

2 +−=                       (27) 

Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics, Chalkida, Greece, May 11-13, 2006 (pp17-22)



and c1, c2 known constants depicted by applying the 
boundary conditions (24), (25) in Eq. (26). The problem 
has also been solved numerically by the BEM presented in 
the previous section for a = 1 and u0 = 1. Due to the 
symmetry of the problem, only one octant of the sphere 
needs to be discretized. In the present work, a mesh of 
thirty-eight quadrilateral quadratic elements was used. The 
radial displacement and its first derivative (radial strain) as 
functions of the distance r for a value of the material 
characteristic length g2 and different values of the surface 
energy parameter  have been evaluated. The results, as it 
is evident in Figs 1.a & b, are in a very good agreement 
with those obtained analytically by using Eq. (26). In the 
same figures the classical elasticity solution is also 
displayed for reasons of comparison. 

l

 
Fig.1 (a): Radial displacement versus radial distance for 
the solid sphere for g2=0.09 and various values of l . 

 
Fig.1 (b): Radial strain versus radial distance for the solid 
sphere for g2=0.09 and various values of surface energy 
parameter . l
 

5.2 Radial deformation of a spherical cavity 

Consider now, the problem of a spherical cavity of 
radius α embedded  into an infinite gradient elastic 
with surface energy 3D space and subjected to an 
external pressure  radially applied at infinity, 
while the double stresses R vanish at the boundary. 
Thus, the boundary conditions of the problem read  

0P

( ) rP ˆ 0Pr
ar
=

=
                                                            (28) 

( ) 0R =
=ar

r                                                                      (29) 

This problem can be easily solved analytically and its 
solution has the form  
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                             (30) 

and B and D known constants depicted applying the 
boundary conditions (28) and (29) into Eq. (30). The 
radial displacement and strain fields as well as the 
radial double stress of this boundary value problem 
obtained numerically via the proposed BEM for α=1, 
P0 / E, ν=0, g = 0.5 and various values of the surface 
energy parameter l  are presented in Fig.2 (a)-(c), 
respectively. Again, the agreement between 
numerical and analytical results is very good. 

 
Fig.2 (a): Radial displacement versus distance r for 
g2=0.25 and various values of . l
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Fig.2 (a): Radial strain versus distance r for g2=0.25 and 
various values of l . 

 
Fig.2 (a): Double stresses μrrr versus distance r for g2=0.25 
and various values of . l
6 Conclusions 
A boundary element method has been developed               
for the static analysis of three-dimensional bodies 
characterized by a linear elastic material behavior 
taking into account microstructural effects with the 
aid of a simple strain gradient theory with surface 
energy. The boundary integral equations of the 
problem consist of one equation for the displacement 
and another one for its normal derivative. Their 
numerical implementation is accomplished with the 
aid of quadratic quadrilateral elements and advanced 
integration algorithms for the highly accurate 
evaluation of singular integrals. A representative 
numerical example has been used to illustrate the 
application of the method and demonstrate its 
advantages, which are the surface-only discretization 
character of the method and its accuracy. 
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