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The Flow in a Profile Cascade with Separate Boundary Conditions
for Vorticity and Bernoulli’'s Pressure on the Outflow
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Abstract: - We formulate strong and weak problems which are mathematical models of a flow of a viscous
incompressible fluid through a profile cascade. We consider separate Dirichlet type boundary conditions for
vorticity and pressure on the outflow. We prove the existence of a weak solution.
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1 Introduction and they therefore described and solved the problem by
means of variational inequalities of the Navier—Stokes

Modelling of a viscous incompressible flow in a 2D type. P. Kigera and Z. Skak [7] solved the problem

cascade represents a complicated theoretical problemfor “small” data. In our paper [2], we have subtracted

especially due to the variety of boundary conditions on the term% (u-m)~u (Where the superscript denotes

parts of the boundary of the flow field. Of first works, the negative part) from the left—hand side of (1) and

treating this subject, we can cite E. Martensen [11] and we obtained the boundary condition

E. Meister [12]. While the boundary conditions on the

inflow and on a profile are of the Dirichlet type, the _y Ou +pn — 1

reduction of the problem to one space period leads to a on 2

condition of a space—periodicity on another part of the Thjs condition also enables us to restrict the kinetic
boundary and finally, a different boundary condition  energy brought back by the backward flow on the outlet

is reasonable on the outflow. Concerning the Situ.at?on and Consequenﬂy, to derive the energy estimate and to
on the Outlet, the flow through a cascade has similar prove the existence of a weak solution.

features as a flow through a channel. J. Heywood,
R. Rannacher and S. Turek [4] explicitly did not in- o

volve any boundary condition on the outflow into the I,
weak formulation and by means of a backward inte- A, N By
gration by parts have shown that this induces the so _—
called “do nothing” boundary condition T

—v Ou +pn = 0. QD
n

o e
Hereu = (u1,u2) is the velocity,p is the kinematic g

pressure an@ denotes the outer normal to the bound-
ary. However, this approach causes difficulties in Ao By
attempts to prove the existence of a weak solution /T_/—\

because condition (1) does not exclude a backward

flow on the assumed outlet and the backward flow can Figure 1: Domair(}
eventually bring a non—controllable amount of kinetic

energy back to the channel. Thus, the energy estimate The pasjc domain, which represents one spatial period

breaks down. This pvroblem can be avoided by ap- f the flow field in the profile cascade, is denoted by
propriate tricks: S. Krémar and J. Neustupa [5], [6] ¢ The boundary condition used on the infldiis
prescribed an additional boundary condition which re-

stricted the kinetic energy brought back on the outflow ulp =g, 3)

(u-n)"u = h. (2)

A
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whereg represents the known distribution of the ve-

locity. The boundary condition used on the profilg
is the no—slip boundary condition

Furthermore, we consider the conditions of periodicity
u(z, 22 +7) = wu(r1,72), (5)
u ou
T2+ T) =~ (21,32) (6)
p(x1,22+7) = plz1,22) (7

for & = (x1, x2) on the artificial boundary_.
In [3], we solved the same problem with the
boundary condition

—Va—u—i-qn =h (8)
on

(whereg = p + 3 |u|? is the so called Bernoulli's
pressure) on the outpily.

In the present paper, we study the 2D steady

Navier—Stokes equation in the form
w(uw)ut = —Vg+v (-0 w(u)+f (9)

Wherew(u) = 81U2 — 62U1 and UJ‘ = (—uQ,ul).
w(u) denotes the vorticity of the flow. The condition

of incompressibility says that
divu = 0. (20)

The condition used oi, arises similarly as the “do
nothing” condition (1) from the weak formulation of
the problem which will be given in the next section.
However, we can note that if the weak solutiaris
“smooth enough” them andq satisfy

g=hi,  —w(u)=h (11)

whereh = (hy, ho) is a given function of’.

2 Weak formulation of the
boundary—value problem

We denote by., .), the scalar product of scalar—val-

ued (respectively vector—valued, respectively tensor—

valued) functions irL2(Q2) orin L2(Q)? orin L ().

H'(Q)isthe usual Sobolev space with the scalar prod-

uct(.,.);. We putH!'(Q)? := H(Q) x HY(Q), the

space of vector functions whose components belong
to H'(€2), with the scalar product which is again de-

noted by(., .);. The corresponding norm will be
denoted byl| . ||;. The symbol||. ||s,sn denotes the
norm in the the Sobolev—Slobodetski spa€é(os2)
or in H5(99)%. Furthermore, we use the following
spaces and notation.

X ={veC>®)? v=00nT;Ul,, v(r),z2+
7) =v(x1,22) V(21,22) €T}

X is the closure oft in H'(Q)2.

- V={veX;divv=0inQ}

— Visthe closure ob in H!(Q)2.
It can be shown that

X ={ve HY(Q)?* v=0inT; UT,,
v(x1, 20 +7) = v(21,22) fOr (11, 29) €ET_}.

The identities o, I, andI_ are valid in the sense
of traces. Using a standard procedure, we can prove
that

V ={v e X; divv=0ae.in Q}.

SpaceV will be equipped by the norr . ||, induced
by the scalar product

(u,v)y = (Vu, Vo). (12)

It can be shown that the norff. || is equivalent with
the norm|| . ||; in V.

In order to derive formally the weak formulation
of the problem (3)—(7), (9)—-(11), we multiply equation
(9) by an arbitrary test functiom = (vy,v3) € V,
integrate ovef) and apply Green’s theorem and use the
boundary conditions and the conditions of periodicity
(3)—(7). We finally arrive at the equation

a(u,v) = (f,v)o + b(h,v), (13)
where
ar(u,w) = (w(w),w®),
m(wvw) = [ et wds,
a(u,v) = a1(w,v) + az(u,u,v)
b(h,v) = —/h.vds.

All these forms are defined far, v, w € H'(Q)?,
f € L?(Q)?andh € L?(T,)%. Nowthe weak problem
reads as follows:

Definition 1 Let the functiongy € H*(T;)? (for some

€ (3, 1]) satisfy the conditiog(A;) = g(Ao). Let
f € L?(Q)? andh € L*(T,)%. The weak solution
of the problem (3)—(7), (9)—(11) is a vector function
u € H'(Q)? which satisfies the identity (13) for all
test functiona € V/, the condition of incompressibil-
ity (10) a.e. in(2, the boundary conditions (3), (4) in
the sense of traces dn andI’, and the condition of
periodicity (6) in the sense of traces bn andl,.
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The pressure term does not explicitly appear in the

definition of the weak solution, however, as it is usual
in the theory of the Navier—Stokes equations, it can be N "
defined on the level of distributions or it can be recov- @@~ + 2,2) = a1(2,2) + a1(g™, 2) + a2(g™, g

ered as a function from ! (Q), if the weak solution is
sufficiently regular.

Proof. Using the definitions of the forms, a; and
as, we find that

*.9%.2)

—I-ag(g*,z,z) + GQ(Z,g*,Z) + a2(z7z7z>'

We further need an extension of the given function Sincez* - z = 0 in €, the termsas(g*, z, ) and

g from I;; onto the whole domaif2. The existence

of the appropriate extension is guaranteed by the next

lemma. (See paper [2] for more details.)

Lemma 2 There exists an extension of functign
fromI; onto o< (we shall denote the extension again
by g) such that it belongs tél 1/2(9Q)?, it equals zero
onTy,, it satisfies the condition of periodicity (5) @n

andI’; and
/ g-ndS = 0.
o0

Moreover, there exists a constant > 0 independent
of g such that

(14)

gll1/2;00 < c1liglls;T - (15)

The proof can be found in [2]. The norms in (15) are
the norms in the Sobolev—Slobodetski spakésr; )?
andH'/2(9Q)2. The next lemma, which is also taken
from [2], shows thay can be extended fronx to (2.

Lemma 3 A functiong € H'/2(99)? which satisfies
(14) can be extended to a functigif € H'(2)? such
that

g*lsa = g (inthe sense of traces) (16)
divg® = 0 inQ, (17)
lg*l < callglliyzon (18)

where the constant, > 0 is independent af.

Now we can construct the weak solutiarn the form
u = g* + z wherez € V is a new unknown function.
Substitutingu = g™* + z into the equation (13), we get
the following problem:Find a functionz € V such
that it satisfies the equation

a(g* + z,v) = (f,v)o + b(h,v) (29)

for all v € V. The final theorem on the existence
reads as follows.

The next two lemmas will give a sufficient condi-
tion for coercivity of the fornu.

Lemma 4 There exist positive constants and cy4
such that

alg* +2.2) = |lzll (v Izl - vezer gl
~csllglZr, = eillgllsm l)  (20)

forall z € V.

as(z, z, z) vanish. Hence,

a(g* + Z,Z) > al(zaz) - ‘al(g*az)‘

—laz(g*, g%, 2)| — laz(2, g%, 7). (21)
We obviously have
ai(z,z) = v(Vz,Vz)y > v|z|> (22)

Let us further estimate the terms on the right-hand side
of (21). If we use the Cauchy inequality, the contin-
uous imbedding of7!(Q2) into L*(2), Green’s theo-
rem and the theorem on traces, we successively obtain

la1(g™, 2)| = v (Vg™ Vz)

< vilg*h =l (23)
las(g*, g%, 2)] = /w<g*>g**zdm
Q
< (g™l lg* N4 124
< esllg* |2 I, (24)
las(z. g%, 2)| = /w<z>g**zdw
Q
< Jw(2)lo lg* 1o I2]los
< collzll? Ig* s, (25)

Substituting (22)—(25) into (21) and using (15), (18),
we get

a(g* +z,2) > vz - vlg*l Iz

=5 lg* 1=l = o llg™ [l =[P

> Izl (V llzll = verea llgllsin, = es ¢t 3 llgllE

—cserea gllsr 1211 (26)
This completes the proof. O
Lemma 5 There exists > 0 such that if

lglls:r < e 27)

then the formu(g* + z, z) is coercive on the space
V. It means that

a(g* +z,z) = +oo. (28)

li
12 [l—+o00
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Proof. Lemma 4 implies that it is sufficient to choose
€ =v/cy. 0

Theorem 6 (on the existence of a weak solution)
There exists > 0 such that if||g||s,1, < e then there
exists a solutions of the boundary—value problem de-
fined in Definition 1.

The proof is based on the Galerkin method. We con-
struct a sequence of approximations, } of function

z from (19). Functionsz,, are elements of finite—
dimensional subspacég, of spacel’ and they sat-
isfy (19), however forv from V,, only. In order to
prove the existence and boundedness,pin V,,, we
need the bilinear forna to be coercive. This condi-
tion leads to the requirement of a sufficient smallness
of the norm of functiong in the spacd.®(T;)2. Due

to the reflexivity of spac&’, the sequencéz,,} con-
tains a sub—sequence which converges weakly in
to a limit function z. The sub—sequence converges
strongly toz in L?(2)2. We can prove that the func-
tion u = g™ + z is a weak solution of the problem

)7, (9-(11).

3 Conclusion

The presented approach to the mathematical mod-
elling of a flow of a viscous incompressible fluid
through a 2D profile cascade differs from the previous
models in the form in which the 2D Navier—Stokes
equation is treated and which further reflects in the
weak formulation. This concerns the viscous term
and the nonlinear term. Writing the nonlinear term
in the formw(u) u* (and considering consequently
Bernoulli’'s pressurg = p+%\u|2 instead of the usual
pressurep) has the advantage that the scalar product
of w(u) u* andu equals zero point-wise ift. Thus,

in order to derive an apriori estimate of a solution, we
do not need to integrate it by parts, we do not obtain
any additional term on the outflow and we are there-
fore able to control a kinetic energy brought back by a

possible backward flow. Considering the viscous term [10]

in the formy(—02, 01 )w(u) on the other hand enables
us to separate the boundary conditions prescribed for
the vorticityw(u) andq on the outflow, see (11).
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