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Abstract: - We formulate strong and weak problems which are mathematical models of a flow of a viscous
incompressible fluid through a profile cascade. We consider separate Dirichlet type boundary conditions for
vorticity and pressure on the outflow. We prove the existence of a weak solution.
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1 Introduction

Modelling of a viscous incompressible flow in a 2D
cascade represents a complicated theoretical problem
especially due to the variety of boundary conditions on
parts of the boundary of the flow field. Of first works,
treating this subject, we can cite E. Martensen [11] and
E. Meister [12]. While the boundary conditions on the
inflow and on a profile are of the Dirichlet type, the
reduction of the problem to one space period leads to a
condition of a space–periodicity on another part of the
boundary and finally, a different boundary condition
is reasonable on the outflow. Concerning the situation
on the outlet, the flow through a cascade has similar
features as a flow through a channel. J. Heywood,
R. Rannacher and S. Turek [4] explicitly did not in-
volve any boundary condition on the outflow into the
weak formulation and by means of a backward inte-
gration by parts have shown that this induces the so
called “do nothing” boundary condition

−ν ∂u
∂n

+ pn = 0. (1)

Hereu = (u1, u2) is the velocity,p is the kinematic
pressure andn denotes the outer normal to the bound-
ary. However, this approach causes difficulties in
attempts to prove the existence of a weak solution
because condition (1) does not exclude a backward
flow on the assumed outlet and the backward flow can
eventually bring a non–controllable amount of kinetic
energy back to the channel. Thus, the energy estimate
breaks down. This problem can be avoided by ap-
propriate tricks: S. Krǎcmar and J. Neustupa [5], [6]
prescribed an additional boundary condition which re-
stricted the kinetic energy brought back on the outflow

and they therefore described and solved the problem by
means of variational inequalities of the Navier–Stokes
type. P. Kǔcera and Z. Skalák [7] solved the problem
for “small” data. In our paper [2], we have subtracted
the term1

2 (u ·n)−u (where the superscript− denotes
the negative part) from the left–hand side of (1) and
we obtained the boundary condition

−ν ∂u
∂n

+ pn− 1
2

(u · n)−u = h. (2)

This condition also enables us to restrict the kinetic
energy brought back by the backward flow on the outlet
and consequently, to derive the energy estimate and to
prove the existence of a weak solution.
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Figure 1: DomainΩ

The basic domain, which represents one spatial period
of the flow field in the profile cascade, is denoted by
Ω. The boundary condition used on the inflowΓi is

u |Γi = g, (3)
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whereg represents the known distribution of the ve-
locity. The boundary condition used on the profileΓw
is the no–slip boundary condition

u |Γw = 0. (4)

Furthermore, we consider the conditions of periodicity

u(x1, x2 + τ) = u(x1, x2), (5)

∂u

∂n
(x1, x2 + τ) = −∂u

∂n
(x1, x2) (6)

p(x1, x2 + τ) = p(x1, x2) (7)

for x ≡ (x1, x2) on the artificial boundaryΓ−.
In [3], we solved the same problem with the

boundary condition

−ν ∂u
∂n

+ qn = h (8)

(whereq = p + 1
2 |u|

2 is the so called Bernoulli’s
pressure) on the outputΓo.

In the present paper, we study the 2D steady
Navier–Stokes equation in the form

ω(u)u⊥ = −∇q + ν (−∂2, ∂1)ω(u) + f (9)

whereω(u) = ∂1u2 − ∂2u1 andu⊥ = (−u2, u1).
ω(u) denotes the vorticity of the flow. The condition
of incompressibility says that

divu = 0. (10)

The condition used onΓo arises similarly as the “do
nothing” condition (1) from the weak formulation of
the problem which will be given in the next section.
However, we can note that if the weak solutionu is
“smooth enough” thenu andq satisfy

q = h1, −ω(u) = h2 (11)

whereh = (h1, h2) is a given function onΓo.

2 Weak formulation of the
boundary–value problem

We denote by(. , .)0 the scalar product of scalar–val-
ued (respectively vector–valued, respectively tensor–
valued) functions inL2(Ω) or inL2(Ω)2 or inL2(Ω)4.
H1(Ω) is the usual Sobolev space with the scalar prod-
uct (. , .)1. We putH1(Ω)2 := H1(Ω)×H1(Ω), the
space of vector functions whose components belong
to H1(Ω), with the scalar product which is again de-
noted by(. , .)1. The corresponding norm will be
denoted by‖ . ‖1. The symbol‖ . ‖s; ∂Ω denotes the
norm in the the Sobolev–Slobodetski spaceHs(∂Ω)
or in Hs(∂Ω)2. Furthermore, we use the following
spaces and notation.

− X = {v ∈ C∞(Ω)2; v = 0 on Γi∪Γw, v(x1, x2 +
τ) = v(x1, x2) ∀ (x1, x2) ∈ Γ−}

− X is the closure ofX in H1(Ω)2.

− V = {v ∈ X ; div v = 0 in Ω}

− V is the closure ofV in H1(Ω)2.

It can be shown that

X = {v ∈ H1(Ω)2; v = 0 in Γi ∪ Γw,

v(x1, x2 + τ) = v(x1, x2) for (x1, x2) ∈ Γ−}.

The identities onΓi, Γw andΓ− are valid in the sense
of traces. Using a standard procedure, we can prove
that

V = {v ∈ X; div v = 0 a.e. in Ω}.

SpaceV will be equipped by the norm||| . |||, induced
by the scalar product

(u,v)V = (∇u,∇v)0 . (12)

It can be shown that the norm||| . ||| is equivalent with
the norm‖ . ‖1 in V .

In order to derive formally the weak formulation
of the problem (3)–(7), (9)–(11), we multiply equation
(9) by an arbitrary test functionv = (v1, v2) ∈ V ,
integrate overΩ and apply Green’s theorem and use the
boundary conditions and the conditions of periodicity
(3)–(7). We finally arrive at the equation

a(u,v) = (f ,v)0 + b(h,v), (13)

where

a1(u,v) = (ω(u), ω(v))0,

a2(u,v,w) =
∫

Ω
ω(u)v⊥ ·w dx,

a(u,v) = a1(u,v) + a2(u,u,v),

b(h,v) = −
∫

Γo

h · v dS.

All these forms are defined foru, v, w ∈ H1(Ω)2,
f ∈ L2(Ω)2 andh ∈ L2(Γo)2. Now the weak problem
reads as follows:

Definition 1 Let the functiong ∈ Hs(Γi)2 (for some
s ∈ (1

2 , 1]) satisfy the conditiong(A1) = g(A0). Let
f ∈ L2(Ω)2 andh ∈ L2(Γo)2. The weak solution
of the problem (3)–(7), (9)–(11) is a vector function
u ∈ H1(Ω)2 which satisfies the identity (13) for all
test functionsv ∈ V , the condition of incompressibil-
ity (10) a.e. inΩ, the boundary conditions (3), (4) in
the sense of traces onΓi andΓw and the condition of
periodicity (6) in the sense of traces onΓ− andΓ+.
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The pressure termq does not explicitly appear in the
definition of the weak solution, however, as it is usual
in the theory of the Navier–Stokes equations, it can be
defined on the level of distributions or it can be recov-
ered as a function fromH1(Ω), if the weak solution is
sufficiently regular.

We further need an extension of the given function
g from Γi onto the whole domainΩ. The existence
of the appropriate extension is guaranteed by the next
lemma. (See paper [2] for more details.)

Lemma 2 There exists an extension of functiong
from Γi onto∂Ω (we shall denote the extension again
byg) such that it belongs toH1/2(∂Ω)2, it equals zero
onΓw, it satisfies the condition of periodicity (5) onΓ−
andΓ+ and ∫

∂Ω
g · n dS = 0. (14)

Moreover, there exists a constantc1 > 0 independent
of g such that

‖g‖1/2; ∂Ω ≤ c1 ‖g‖s; Γi . (15)

The proof can be found in [2]. The norms in (15) are
the norms in the Sobolev–Slobodetski spacesHs(Γi)2

andH1/2(∂Ω)2. The next lemma, which is also taken
from [2], shows thatg can be extended from∂Ω to Ω.

Lemma 3 A functiong ∈ H1/2(∂Ω)2 which satisfies
(14) can be extended to a functiong∗ ∈ H1(Ω)2 such
that

g∗ |∂Ω = g (in the sense of traces), (16)

div g∗ = 0 in Ω, (17)

‖g∗‖1 ≤ c2 ‖g‖1/2; ∂Ω (18)

where the constantc2 > 0 is independent ofg.

Now we can construct the weak solutionu in the form
u = g∗+z wherez ∈ V is a new unknown function.
Substitutingu = g∗+z into the equation (13), we get
the following problem:Find a functionz ∈ V such
that it satisfies the equation

a(g∗ + z,v) = (f ,v)0 + b(h,v) (19)

for all v ∈ V . The final theorem on the existence
reads as follows.

The next two lemmas will give a sufficient condi-
tion for coercivity of the forma.

Lemma 4 There exist positive constantsc3 and c4

such that

a(g∗ + z,z) ≥ |||z|||
(
ν |||z||| − ν c2 c1 ‖g‖s; Γi

−c3 ‖g‖2s; Γi − c4 ‖g‖s; Γi |||z|||
)

(20)

for all z ∈ V .

Proof. Using the definitions of the formsa, a1 and
a2, we find that

a(g∗ + z,z) = a1(z,z) + a1(g∗,z) + a2(g∗, g∗,z)

+ a2(g∗,z,z) + a2(z, g∗,z) + a2(z,z,z).

Sincez⊥ · z = 0 in Ω, the termsa2(g∗,z,z) and
a2(z,z,z) vanish. Hence,

a(g∗ + z,z) ≥ a1(z,z)− |a1(g∗,z)|
− |a2(g∗, g∗,z)| − |a2(z, g∗,z)|. (21)

We obviously have

a1(z,z) = ν(∇z,∇z)0 ≥ ν |||z|||2. (22)

Let us further estimate the terms on the right-hand side
of (21). If we use the Cauchy inequality, the contin-
uous imbedding ofH1(Ω) into L4(Ω), Green’s theo-
rem and the theorem on traces, we successively obtain

|a1(g∗,z)| = ν (∇g∗,∇z)0

≤ ν ‖g∗‖1 |||z|||, (23)

|a2(g∗, g∗,z)| =
∣∣∣∣∫

Ω
ω(g∗) g∗⊥ · z dx

∣∣∣∣
≤ ‖ω(g∗)‖0 ‖g∗‖L4 ‖z‖L4

≤ c5 ‖g∗‖21 |||z|||, (24)

|a2(z, g∗,z)| =
∣∣∣∣∫

Ω
ω(z) g∗⊥ · z dx

∣∣∣∣
≤ ‖ω(z)‖0 ‖g∗‖L4 ‖z‖L4

≤ c6 |||z|||2 ‖g∗‖1, (25)

Substituting (22)–(25) into (21) and using (15), (18),
we get

a(g∗ + z,z) ≥ ν |||z|||2 − ν ‖g∗‖1 |||z|||

− c5 ‖g∗‖21 |||z||| − c6 ‖g∗‖1 |||z|||2

≥ |||z|||
(
ν |||z||| − ν c1 c2 ‖g‖s; Γi − c5 c

2
1 c

2
2 ‖g‖2s; Γi

−c6 c1 c2 ‖g‖s; Γi |||z|||
)
. (26)

This completes the proof. ut

Lemma 5 There existsε > 0 such that if

‖g‖s; Γi < ε, (27)

then the forma(g∗ + z,z) is coercive on the space
V . It means that

lim
|||z|||→+∞

a(g∗ + z,z) = +∞. (28)
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Proof. Lemma 4 implies that it is sufficient to choose
ε = ν/c4. ut

Theorem 6 (on the existence of a weak solution)
There existsε > 0 such that if‖g‖s; Γi < ε then there
exists a solutionu of the boundary–value problem de-
fined in Definition 1.

The proof is based on the Galerkin method. We con-
struct a sequence of approximations{zn} of function
z from (19). Functionszn are elements of finite–
dimensional subspacesVn of spaceV and they sat-
isfy (19), however forv from Vn only. In order to
prove the existence and boundedness ofzn in Vn, we
need the bilinear forma to be coercive. This condi-
tion leads to the requirement of a sufficient smallness
of the norm of functiong in the spaceLs(Γi)2. Due
to the reflexivity of spaceV , the sequence{zn} con-
tains a sub–sequence which converges weakly inV
to a limit functionz. The sub–sequence converges
strongly toz in L2(Ω)2. We can prove that the func-
tion u = g∗ + z is a weak solution of the problem
(3)–(7), (9)–(11).

3 Conclusion

The presented approach to the mathematical mod-
elling of a flow of a viscous incompressible fluid
through a 2D profile cascade differs from the previous
models in the form in which the 2D Navier–Stokes
equation is treated and which further reflects in the
weak formulation. This concerns the viscous term
and the nonlinear term. Writing the nonlinear term
in the formω(u)u⊥ (and considering consequently
Bernoulli’s pressureq ≡ p+ 1

2 |u|
2 instead of the usual

pressurep) has the advantage that the scalar product
of ω(u)u⊥ andu equals zero point-wise inΩ. Thus,
in order to derive an apriori estimate of a solution, we
do not need to integrate it by parts, we do not obtain
any additional term on the outflow and we are there-
fore able to control a kinetic energy brought back by a
possible backward flow. Considering the viscous term
in the formν(−∂2, ∂1)ω(u) on the other hand enables
us to separate the boundary conditions prescribed for
the vorticityω(u) andq on the outflow, see (11).
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[7] P. Kučera and Z. Skalák: Local solutions to the
Navier-Stokes equations with mixed boundary
conditions.Acta Applicandae Mathematicae54,
No. 3, 1998, 275–288.
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