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Abstract:- This paper presents a novel algorithm for identifying and measuring the symmetrical components of 
distorted three phase voltage or current waveforms in electrical power systems.  The proposed algorithm  is 
capable of estimating the symmetrical components as well as the harmonic contents of a given unbalanced 
distorted  signal. The proposed technique is based on stochastic estimation theorem.  The problem is 
formulated as an estimation problem and presented in state space form. The proposed algorithm used to 
estimate the positive, negative and zero components of unsymmetrical waveforms as well as the harmonic 
content of a given distorted signal.  Application of the proposed algorithm has been conducted on various test 
cases. Among which a practical simulated power system has been implemented using EMTP. Various 
scenarios are carried out to simulate realistic situations of unsymmetrical waveforms. Effects of bad data  on 
the solution accuracy are also studied.  The speed of convergence is examined by changing the estimator initial  
conditions. Results obtained show that the proposed technique can estimate and track  the symmetrical  
components of non-stationary three phase unbalance voltage or current waveforms  in noisy environments. Fast 
accurate solutions are guaranteed  regardless of the initial conditions. It is also shown that bad measurements 
have no effects on the final accuracy of the estimation.   
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1 Introduction  
The method of symmetrical components is a very 
important tool for the analysis of three phase 
electrical systems. Protection of power system 
needs accurate identification of symmetrical 
components of the measured signals.  During 
unbalanced disturbances, symmetrical components 
change their values significantly. It is thus very 
important to track symmetrical components on-line. 
Several methods have, so far, been proposed to 
calculate the symmetrical components of a voltage 
or current signals, many of these methods are based 
on static state estimation, others are based on 
dynamic state estimation techniques. 
     Reference [1] presents a review on some of static 
estimation techniques and proposed the use of 
recursive least error squares technique.  
Reference[2] proposed a digital filtering algorithm 
for estimation of symmetrical  components.     The  
 
 

 
algorithm is based on using two digital filters 
working together for fast estimation.  The input 
three phase unbalanced system is transformed, first, 
into βα −  transformation. The least error square 
estimation technique is then used to identify the 
magnitude and phase angle of each sequence 
component. As known, the least error square 
estimation solution is affected by the presence of 
bad data. In reference [3] a fast efficient method 
based on Fast Fourier transform (FFT) is presented. 
There are basic assumptions embedded in the 
application of the FFT. These assumptions are (a) 
the signal is stationary; (b) the sampling frequency 
is equal to the number of samples multiplied by the 
fundamental frequency assumed by the algorithm; 
(c) sampling theorem is satisfied. Misapplication of 
Fourier transform algorithm would lead to 
inaccurate results.  Reference [4] presents a method 
based on non-recursive Newton type algorithm. The 
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algorithm is not sensitive to power system frequency 
changes and to harmonic distortion of input signals.   
     Dynamic state estimation techniques such as 
Kalman Filtering (KF) and weighted least absolute 
value dynamic filters are also presented in many 
references [5], [6] and [7]. The algorithm presented 
in reference [5] detects the positive and negative 
sequence components after filtering the zero 
sequence components.  Although this method gives 
good results, it was not tested in the presence of bad 
data points.  Reference [7] presents an application of 
a dynamic filter for on-line estimation of 
symmetrical components. The method detects the 
sequence components of a pure sine waveforms.  
Sequence filters are also frequently used in power 
system protection for identifying voltage or current 
symmetrical components during abnormal 
operations. Sequence filters output can be affected 
by saturation that may happen to the filter coil 
elements [8]. In reference [8] another on-line 
method for estimating symmetrical components is 
presented. The method is based on the use of a set of 
enhanced phase-locked loop systems. Reference [9] 
introduced an adaptive linear combiner for 
symmetrical components estimation. The technique 
is capable of estimating both the symmetrical 
components as well as the harmonic contents of 
measured unsymmetrical distorted signals.  The 
algorithm is based on Kalman filtering  technique.  
    Approaches based on artificial intelligence 
techniques such as genetic algorithms, fuzzy logic 
and neural networks are also proposed to detect and 
identify voltage and current sequence components, 
[10], [11], [12].Many other techniques are suggested 
and implemented in the time domain [13], [14].  
   This paper presents  a novel technique  based on 
recursive algorithm which can be used for digital 
identification  of the symmetrical components of 
the harmonic contaminated voltage or current 
waveforms in electrical power systems.  The 
algorithm is an optimal dynamic estimator based on 
stochastic estimation  theory which is applicable  
for estimating and tracking the non-stationary 
signals. Unlike Kalman Filter   which minimizes the 
error square, The proposed estimator gain matrix is 
derived in such a way to minimize the absolute 
error in the estimation process,  thus the estimator  
is named dynamic least absolute estimator 
(DLAVE).  The  method allows a very fast  
determination and isolation of the fundamental and 
harmonic components and consequently  the desired 
parameters of symmetrical components when a 
change in the power system occurs. Results 

obtained show that the proposed technique 
efficiently estimates the symmetrical components of 
three phase unbalance voltage or current waveforms 
under different circumstances.   

2  Mathematical Modeling 
The idea here is to present the relationship between 
the unsymmetrical waveforms and the symmetrical 
components  in state space form which is suitable 
for the proposed algorithm. This is done via two 
steps. In the first step, the distorted signal is 
decomposed to its fundamental and harmonic 
contents.  In the second step,  the fundamental 
component is resolved to obtain its symmetrical 
components.  
 
2.1  Distorted waveform modeling  
Assume that we have a non- sinusoidal waveform 
given as 

( ) ( )ijjjm

n

j
dc twIIti θ++= ∑

=
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  (1) 

where 
Idc        is the dc component of the current 
j   equals 1 for fundamental and equals 2,3,.. for 
harmonics 
n     is the maximum  order of harmonic considered  
Ij   is the jth  maximum value of the current  

component 
θ  ij     is the phase angle of the jth  current component 
 
Equation 1  can be expanded  as:  
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without loosing generality,  it can be assumed  that 
the signals are contaminated with harmonics of 
orders 3rd, 5th and 7th.in addition to the dc offset 
component,  so we can write: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 87776555

43332111

cossincossin

cossincossin

iiii

iiiio

XtXtXtXt

XtXtXtXtXti

ωωωω

ωωωω

++++

++++=
  (3)   

where: 
 Xo = Idc   , 7,5,3,1),sin( == kmkmkIikX θ   

8,6,4,2),sin( == kmkmkIikX θ                             (4) 

        
If   the current signal is sampled at a pre-selected 
rate, ∆T , then m samples,  would be obtained at t1, 
t2, …, tm.   In a compact matrix form we can write 
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In a compact matrix  form, equation 5 can be 
rewritten in state space form as, 

( ) ( ) ( ) ( )kekXkHkZ +=                                           (6) 
where 
      
Z(k)        is mx1 measurement vector of  the  current 
samples   
H(k) is mx9 measurement matrix  
X(k) is  9x1 state vector to be estimated  
e(k) is mx1 measurement error vector, to be 

minimized. It is  assumed to be white 
sequence with known covariance R(k). 

 
The  state  transition equation will be in the form:  

         
( ) ( ) ( ) ( )kkXkkX ϖ+Φ=+1                                 (7)  

 
where 
( )kΦ   9x9 state transition matrix given as a unit 

diagonal matrix (assuming rotating 
reference)  

( )kϖ  9x1 error vector of the state  assumed to be 
a white (uncorrelated) sequence with known 
covariance matrix Q(k). 

    Once the state vector is  identified, the RMS 
values of fundamental, DC  and harmonic  currents 
and their phase angles can be calculated as: 

 
)/(tan, )1
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)1(

2
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where k equals 1 for fundamental and 3,5,7 for the 
other harmonics. 

 
Once the fundamental component is separated from 
the rest of the signal,  the symmetrical components 
can be estimated using  the following model.  

 
2.2   Pure sinusoidal waveform 
Now, Consider a three phase unsymmetrical  
fundamental voltages or currents given as: 
 
Ia(t)=Iamsin(wt+va)   
Ib(t)=Ibmsin(wt+vb)       (9) 
Ic(t)=Icmsin(wt+vc)   
 
We can write the symmetrical components as: 
 
Ia(t)=I0+I1+I2 
Ib(t)=I0+a2I1+aI2              (10)  
Ic(t)=I0+aI1+ a2I2 

Where    a=exp(j2π /3)=1 120∠   
   
Ia(t)= I0m sin(wt+v0)+ I1m sin(wt+v1) +I2msin(wt+v2)  
Ib(t)=I0msin(wt+v0)+I1msin(wt+v1-120)+I2m  

sin(wt+v2+120)      
Ic(t)=I0msin(wt+v0)+I1msin(wt+v1+120)+I2m 

sin(wt+v2 -120)                                      (11) 
 
Substitute     sin(a+b)=sin(a)cos(b)+cos(a)sin(b) 
           cos(a+b)=cos(a)cos(b)-sin(a)sin(b)   
 
We will  end up with the following equations(12)

 
       Ia(t)=I0m{sin(wt)cos(v0)+cos(wt)sin(v0)}+I1m{sin(wt)cos(v1)+cos(wt)sin(v1)}+I2m{sin(wt)cos(v2) +cos(wt)sin(v2)} 
        
        Ib(t)=I0m{sin(wt)cos(v0)+cos(wt)sin(v0)}+I1m{sin(wt)cos(v1)cos(-120)+ 
                 cos(wt)sin(v1)cos(-120)+cos(wt)cos(v1)sin(-120)-sin(wt)sin(v1)sin(-120)}+ 
                I2m{sin(wt)cos(v2)cos(120)+ cos(wt) sin(v2)cos(120)+cos(wt)cos(v2)sin(120)-sin(wt)sin(v2)sin(120)} 
 
        Ic(t)=I0m{sin(wt)cos(v0)+cos(wt)sin(v0)}+I1m{sin(wt)cos(v1)cos(120)+  
                cos(wt)sin(v1)cos(120)+cos(wt)cos(v1)sin(120)-sin(wt)sin(v1)sin(120)}+ 
               I2m{sin(wt)cos(v2)cos(-120)+cos(wt)sin(v2)cos(-120)+cos(wt)cos(v2)sin(-120)-sin(wt)sin(v2)sin(-120)}  (12)    
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These equations can be written in a compact matrix 
form  as: 
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where  
  X1(t)=I0m cos(v0) 
  X2(t)=I0m sin(v0) 
            X3(t)=I1m cos(v1)    
 X4(t)=I1m sin(v1)       (14)    
           X5(t)=I2m cos(v2) 
           X6(t)=I2m sin(v2) 
 
 the (h) coefficients are considered as the remaining 
parts of equations (12). If the three phase currents 
are sampled at a  rate of  (fs) within the specified 
window size, m samples would be obtained for each 
current  at t1 , t2 ,…,tm , where t1 is the initial 
sampling time. In a state space  matrix form we can 
write this system as in equation (6) 
 
Z`(t) = H`(t)X`(t)+e`(t)              (15) 
 
where: 
Z`(t)  3m x 1 vector of current measurements 
H`(t)    3m x 6  connection matrix 
X`(t)  6 x 1  state vector to be estimated 
E`(t)     3m x 1 error vector to be minimized  

 
It is clear that once the state vector X(k) is 
estimated, the magnitudes and phase angles of 
symmetrical components at any step (k) can be 
calculated as: 

 
3  Description of the proposed 
algorithm 
The on-line estimation process of the  parameters is 
performed using the  discrete least absolute value 
filtering algorithm (DLAVF). The complete 
derivation of the proposed filter equations is beyond 
the scope of this paper and is given in reference 
[16].  The dynamic filter works on the discrete state 
space model described by the measurement equation 

and the state transition equation in the following 
form. 

 
( ) ( ) ( ) ( )kekXkHkA +=                            (16) 

( ) ( ) ( ) ( )kkXkkX ϖ+Φ=+1                         (17) 
 

As mentioned before, the measurement error vector 
e(k) is assumed to be white sequence with known 
covariance as, 
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The initial condition of X(0) is a Gaussian random 
vector with the following statistics, 

( ){ } ( )00 XXE =                 (19) 
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where ( )0P  is the initial error covariance matrix of 
the states, with dimensions m*m. The covariance of 
the error at any step (k) can be obtained by replacing 
X(0) with X(k) in equation (20). The covariance 
matrix for  ( )kϖ     is given as: 

( ) ( ){ } ( )⎩
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The algorithm starts with an initial estimate for the 
system parameter vector ( )0X  and its error 
covariance matrix ( ( )0P ) at some point k=0. These 

estimates are denoted as PX , , where (_) means 
that these are the best estimations at this point, prior 
to assimilating the measurement at instant k. With 
such initial values, of both parameters and error 
covariances, filter gain matrix K(k) at this step is 
calculated as follows, 
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assuming that the state vector dimension is ux1,  the 
vectors L and y are defined as:  L is ux1 column 
vector ( )T1,,1,1 Λ ; and yT is 1xu row vector (1,1) [16]. 
Using the filter gains, estimates are updated with 
measurements Z(k) through equation (23), and error 
covariances for update estimates are computed from 
equation (24). 
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Finally, the error covariances and the estimates are 
projected ahead to repeat with k=2. 
 
 

( ) ( ) ( ) ( ) ( )kQkTkPkkP +ΦΦ=+1              (25) 

( ) ( ) ( ) )(ˆ1 kRkXkkX +Φ=+                           (26) 
  
    
 The process is repeated  until the last sample is 
reached. It is assumed that the co-variances and the 
transition matrices are known. It is also assumed 
that a good initialization of the filter is obtained 
using the results of static method such as least 
squares error or least absolute value. From the test 
examples, we will show that good initialization is 
not necessary to satisfy the required accuracy in this 
application of the filter. 
     It is very important to mention here that the 
difference between the proposed discrete least 
absolute value filter (DLAVF) and Kalman filter 
(KF) method lies in the gain equation, due to the 
difference in the nature of the objective function 
used in deriving the filter equation. In KF, the 
function is the  least  squares error, but in DLAVF, 
the function is the least absolute error. 
 
4  Testing of Algorithm 
The performance of the proposed method is tested 
using four  different study cases. In the first case a 
simulated unbalanced three phase currents are 
generated and analyzed using the proposed 
algorithm.  Effects of bad data on the performance 
of the estimator are studied. 
    In the second case, a harmonic contaminated 
waveforms are  analyzed to show the ability of the 
algorithms for resolving the distorted waveforms 
and  extract the sequence components from it. In the 
third study case a simulated short circuit currents 
are generated and analyzed to show the ability of the 
algorithm to detect the symmetrical components 
during unsymmetrical short circuits. In the fourth  
study case, a practical power system, represent the 
Kuwait extra high voltage network (275 KV),  is 
simulated using EMTP. In this case the testing 
involves unbalanced waveforms.  

4.1  Case Study 1: Unbalanced  load currents 
 In this case,  the algorithm is tested  using 
simulated data  based on unbalanced  three phase 
current given in figure 1. 
 
From t=0 to t= 0.05 , the currents are given by 
 
Ia(t)=100 sin(wot+30o),  Ib(t)=50 sin(wot+300o)  and                 
Ic(t)=30 sin(wot+180o) 
 
A sudden change  in both magnitude and phase 
angle is introduced at t=0.1 sec. in order to test the 
performance of the algorithm. At t=0.05, the new set 
of currents is given by: 
 
Ia(t)=70 sin(wot+20o),   Ib(t)=40 sin(wot-100o) and                 
Ic(t)=10 sin(wot+70o) 
 

- 1 0 0

- 5 0

0

5 0

1 0 0

1 1 0 1 2 0 1 3 0 1 4 0 1

IA
IB
IC

 
Fig.  1  The generated unsymmetrical  waveforms 
 
    These currents are sampled at 3000 Hz.  The 
obtained samples are fed to the algorithm. The three 
magnitudes and phase angles of the zero, positive 
and negative phase sequence components are shown 
in figures 2 and 3. Table 1 shows the steady state  
values of theses estimated magnitudes and angles 
for both of the periods studied.  Figures 2 and 3 
show that  the algorithm obtained the new sequence 
components after the sudden change successfully 
and reached steady state in less than 2 cycles. This   
means that for non-stationary waveforms, the 
estimator would track the symmetrical components 
instantaneously once a change has occurred. The 
exact solution is thus guaranteed.   Examination of 
table 1 reveals that  the results obtained are very 
accurate. The maximum error is less than 0.5%.     
    The algorithm is then tested in the presence of  
bad  data. The first period of time ( up-to 0.05 
seconds) is used to perform this study.  To simulate 
the bad data situation,  the three phase current 
samples Ia ,   Ib and Ic are deliberately changed to 
zeros at randomly selected step,  before steady state 
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solution is reached. Figure 4 shows  the disturbance 
caused by the bad data points on the estimated  
symmetrical component magnitudes.    It  is clear 
that the final estimation was not affected by bad 
data points. The only thing is that there is some 
delay in the time needed to reach the steady state   
estimation. This can be considered as if the 
estimator inherently detected the bad data points.  
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Fig. 2  Symmetrical component magnitudes 
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Fig. 3  Symmetrical component phase angles 

 
Table 1 Magnitudes and phase angles of the 

sequence components 
0<t<0.05   sec. 

 
0.05<t<0.1 sec.  

Estimated  Exact  Estimated  Exact  
I0 27.29226 27.2923 20.87012 20.84866 
I1 57.98314 57.9812 37.95319 37.9362 
I2 18.97255 18.9700 18.05516 18.06 
v0 4.695059 4.69280 -5.52684 -5.55 
v1 43.29427 43.2947 15.15746 15.26 
v 2 24.96427 24.9600 62.4838 62.176 
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Fig. 4 Bad data effects 

 
 
4.2 Case Study 2:  Distorted unbalanced  

currents 
The second study case is aimed toward testing the 
proposed  algorithm in tracking  symmetrical 
components of the current signals contaminated  
with harmonic distortion, which is a common 
situation in the actual  distribution systems [6], [9].    
The data used for this test is taken from reference 
[6]. Figure 5 shows the considered signal. This 
signal is assumed to be composed of fundamental 
and third components.  Table 2 shows the estimated 
fundamental and third harmonic magnitudes and 
phase angles along with their exact values. It is 
clear that the fundamental and third harmonic 
component magnitudes and phase angles are 
estimated at a very high degree of accuracy.  Table 
3 shows the  final steady state estimate sequence 
magnitudes and phase angles values.  In this case, 
zero initial conditions were used for the problem 
states. The convergence to the steady state values is  
shown in figures 6a,b,c.  These figures confirm the 
conclusion reached before. The solution is obtained 
very fast regardless  the initial conditions.  The very 
important thing here is that the filter succeeds in 
estimating both of the harmonic contents as well as 
the unsymmetrical components. In other words, the 
filter can extract the sequence components even 
from a harmonic contaminated signal.  
 
  

Table 2 The steady state estimated values of the fundamental & the harmonic components 
 

Fundamental component 
Magnitudes 

Fundamental component 
Phase angles (degree) 

Thirdֹharmonic 
magnitudes 

Third harmonic 
Phase angles(degree) 

Estimated Exact Estimated Exact Estimated Exact Estimated Exact 
212.128 212.132 44.98 45 106.00 106.067 9.0 9.0 
353.547 353.55 150.06 150 176.77 176.78 -59.59 -60 
141.420 141.42 299.91 300 70.70 70.71 120.38 120 

Proceedings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, Chalkida, Greece, May 8-10, 2006 (pp173-181)



- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

4 0 0

6 0 0

1 5 1

T i m e  S t e p

A
IA

IB

IC

 

2 2 9 . 8

2 3 0

2 3 0 . 2

2 3 0 . 4

2 3 0 . 6

2 3 0 . 8

2 3 1

2 3 1 . 2

1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1

T i m e  S t e p

A
m

pe
re

 
Fig. 5  Three phase distorted  unbalanced currents 

 
 
Table 3  The extracted  unsymmetrical components 
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Fig. 6a   The zero sequence component 
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Fig.6b The positive sequence component 

Fig. 6 c  The negative sequence components 
 
4.2  Case study 3: Unsymmetrical  short 
circuit currents 
In this case, a practical simplified power system, 
taken from the literature [7,15], is used to show the 
ability of the estimator to track the symmetrical 
components during short circuits in power system. 
The system consists of a generator and a step-up 
transformer which feed a dynamic load, motors, 
through a transmission line and a step-down 
transformer. A line to ground  fault on phase (A) is 
assumed to occur at  the sending end terminals just 
after the step-up transformer. Based on the system 
p.u. data given, a simulation program is used to 
simulate the three phase unsymmetrical currents 
measured in the transmission line. The steady state 
short circuit currents are  shown in figure 7.  
    In reality the measured currents are sampled at a 
pre-selected rate. A five samples per cycle are used. 
The power frequency is 50 Hz. Table 4 shows the 
magnitudes of the symmetrical  components and 
their phase angles as well as the exact values. 
Examining this table reveals that the results 
obtained are very accurate compared with the 
calculated values obtained using the conventional 
calculations.  
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Fig. 7  The steady state short circuit currents 

 

Sequence components  

Estimated  Exact  
I0 73.82 73.82 
I1 67.91 67.91 
I2 230.805 230.805 
v0 112.702 112.73 
v1 -87.56 -87.70 
v 2 40.45 40.50 
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Table 4  Case study  3, W.S.=10 cycles,  
5 samples /cycle, zero  initial conditions 

 
4.3  Case study 4: Practical Application 
In this case, a practical power system is simulated to 
demonstrate the ability of the estimator to track the 
symmetrical components during abnormal 
conditions in practical power system. The Kuwait 
EHV network system is simulated using EMTP. The 
simulated system is shown in figure 8. The network 
comprises 15 nodes, 12 double circuit short 
overhead transmission lines, and 8 underground 
cable circuits.  It is connected in ring system with 
two main generating stations. The system is used to 
generate unbalanced current waveforms. The 
measured unsymmetrical currents at “Alomaria” bus 
are shown in figure 9.  It is clear that the  
waveforms contains a DC offset. The data window 
size considered for the analysis is 0.02 sec. Table 5 
shows the results obtained.  It can be noticed that 
the three components exist. Figure10 shows the 
solution convergence.  Again as in the case of the 
harmonic contaminated signal, the filter succeeds in 
estimating the DC offset components  as well as the 
unsymmetrical component of the waveforms. The 
estimated DC values were 979, 2765 and                                
1755 Amperes for the phases a, b and c respectively. 
 

 
 

        Fig.  8.  System under study 
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Fig.  9  Unbalanced loading 
 
 

Table 5  The sequence components of the 
practical  case 
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Figure 10 Solution convergence 
 
 
5  Conclusions   
In this paper a new dynamic  technique is presented 
for identifying and  measuring the symmetrical 
components of unsymmetrical voltage or current 
waveforms.  The proposed technique is based on 
stochastic estimation theory.  The parameters to be 
identified are the perpendicular components of the 
waveform from which both the magnitudes and the 
phase angles of the symmetrical components are 
calculated. Simulated data are used to test the 
algorithm. The algorithm gives very accurate results 

Sequence components  

Estimated  Exact  
I0 0.39 0.39 
I1 1.18 1.18 
I2 1.18 1.18 
v0 89.9 90 
v1 89.9 90 
v 2 89.9 90 
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regardless of the initial conditions. This means that 
if the algorithm is used on-line, it would track the 
states of the non-stationary waveforms. The 
estimator has proven that it can give very accurate 
solutions even with the existence of  harmonics, Dc 
component and  bad data points.  A practical study 
cases for determining the symmetrical components 
of the unsymmetrical currents that flow in practical 
power systems during unsymmetrical  loading and 
fault conditions, has also been considered. The very 
accurate results obtained in all cases prove that the 
proposed method  has a very high efficiency that 
makes it  very useful  tool in power system 
protection applications. 
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