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Abstract: - We show that a strong solutionu of the Navier–Stokes initial–boundary value problem which is in a
certain sense bounded and integrable on the time interval(0,+∞), is stable with respect to small disturbances of
the initial velocity in the norm‖A1/4. ‖ (where‖ . ‖ is theL2–norm andA is the Stokes operator) and to small
disturbances of the right hand side.
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1 Introduction

Let Ω ⊂ R3 be a bounded domain with the boundary
∂Ω of the Hölder classC2+β for someβ > 0. Suppose
that 0 < T ≤ +∞. PutQT = Ω × (0, T ). We
deal with the initial–boundary value problem for the
Navier–Stokes equation

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f in QT , (1)

divu = 0 in QT , (2)

u = 0 in ∂Ω× (0, T ), (3)

u(0) = u0 in Ω. (4)

u denotes the velocity,p denotes the pressure,ν is the
kinematic coefficient of viscosity andf is a specific
body force. We further assume for simplicity thatν =
1. (This assumption does not influence the validity of
our results.)

We denote byH the closure ofC∞0,σ(Ω) (the
space of infinitely differentiable divergence–free vec-
tor functions inΩ which have a compact support inΩ)
inL2(Ω)3. The norm inL2(Ω)3 (and inH) is denoted
by ‖ . ‖. PutA = −Pσ∆ wherePσ is the orthogonal
projection ofL2(Ω)3 ontoH. A is the Stokes operator
with the domainD(A) = W 2,2(Ω)3∩W 1,2

0 (Ω)3∩H.
D(A) is the Banach space with the norm‖A . ‖ which
is equivalent with the norm ofW 2,2(Ω)3. It is well
known that operatorA is self–adjoint and positive (see
e.g. Y. Giga [2] and [3]). Other properties of the Stokes
operator are in greater detail described in the book [10]
by W. Varnhorn. It makes therefore sense to consider

fractional powers ofA. It can be shown thatD(Aµ)
is not only the domain ofAµ, but it can be treated as
the Banach space with the norm‖Aµ. ‖ (for µ > 0).

2 Small perturbations of the initial
velocity in the norm of D(A1/4)

Theorem 1 Let u be a strong solution of the prob-
lem (1)–(4) and with the input datau(0) = u0 ∈
D(A1/4), Pσf ∈ L2(0, T ; H). Letu satisfy∫ T

0

(
‖A3/4u(t)‖2 + ‖A1/2u(t)‖4

)
dt < ∞. (5)

Then to givenε > 0, there existsδ > 0 such that if
v0 ∈ D(A1/4), Pσg ∈ L2(0,∞; H) are functions
satisfying

‖A1/4u0 −A1/4v0‖

+
∫ T

0
‖Pσf(t)− Pσg(t)‖2 < δ (6)

then there exists a unique strong solutionv of the
problem (1)–(4) with the datav0 and g (instead of
u0 andf ) on the time interval(0,+∞), satisfying

‖A1/4v(t)−A1/4u(t)‖2

+
∫ t

0
‖A3/4v(s)−A3/4u(s)‖2 ds ≤ ε (7)

for all t ∈ (0, T ).
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If T = +∞ then Theorem 1 provides the infor-
mation on stability of solutionu.

A similar result (withT = +∞) was already
proved by G. Ponce et al. in [4]. However, our assump-
tion (6) is weaker because we measure the difference
between the initial velocitiesv0 andu0 in the norm
‖A1/4. ‖ while the authors of [4] were using the norm
‖A1/2. ‖.

The assumption that the strong solutionu sat-
isfies (5) is not restricting because the strong so-
lution on the interval (0, T ) usually belongs to
L∞(0, T ; D(A1/2))∩L2(0, T ;D(A)) and then it sat-
isfies (5) automatically. In fact, it is sufficient if
u ∈ L∞(0, T ; D(A1/4)) ∩ L2(0, T ; D(A3/4)) be-
cause then, using the obvious inequality

‖A1/2ψ ‖ ≤ ‖A1/4ψ‖1/2 ‖A3/4ψ‖1/2 (8)

which holds for everyψ ∈ D(A3/4), we get∫ T

0
‖A1/2u(t)‖4 dt

≤
∫ T

0
‖A1/4u(t)‖2 ‖A3/4u(t)‖2 dt

≤ sup
0<t<T

ess ‖A1/4u(t)‖2
∫ T

0
‖A3/4u(t)‖2 dt

< +∞.

Proof of Theorem 1: Sincev(0) ∈ D(A1/4), there
existsT ∗ > 0 such thatv is a strong solution on
(0, T ∗). Thenw = v − u satisfies the equation

ẇ +Aw + Pσ (w · ∇)w + Pσ (u · ∇)w

+Pσ (w · ∇)u = Pσg − Pσf

on (0, T ∗). Multiplying it by A1/2w and integrating
onΩ, we obtain

d
dt

1
2
‖A1/4w‖2 + ‖A3/4w‖2

≤
∣∣∣∣∫

Ω
Pσ (w · ∇)w ·A1/2w dx

∣∣∣∣
+
∣∣∣∣∫

Ω
Pσ (u · ∇)w ·A1/2w dx

∣∣∣∣
+
∣∣∣∣∫

Ω
Pσ (w · ∇)u ·A1/2w dx

∣∣∣∣
+
∣∣∣∣∫

Ω
(Pσg − Pσf) ·A1/2w dx

∣∣∣∣ (9)

We will now estimate the integrals on the right hand
side of (9). We shall denote byC a generic constant,

i.e. the constant whose value may change from line
to line. On the other hand, numbered constants will
have a fixed value throughout the whole paper. The
constants will always depend only on domainΩ. We
shall also use the inequality

‖Pσ (φ · ∇)ψ‖ ≤ c1 ‖A1/2φ‖ ‖A3/4ψ‖ (10)

which holds for everyφ ∈ D(A1/2) andψ ∈ D(A3/4)
(see [7], estimate (2.5)). Thus, we get the inequalities∣∣∣∣∫

Ω
Pσ (w · ∇)w ·A1/2w dx

∣∣∣∣
≤ C ‖A1/2w‖ ‖A3/4w‖ ‖A1/2w‖

≤ C ‖A3/4w‖2 ‖A1/4w‖, (11)∣∣∣∣∫
Ω
Pσ (u · ∇)w ·A1/2w dx

∣∣∣∣
≤ C ‖A1/2u‖ ‖A3/4w‖ ‖A1/2w‖

≤ C ‖A3/4w‖3/2 ‖A1/4w‖1/2 ‖A1/2u‖

≤ 1
6
‖A3/4w‖2 + C ‖A1/4w‖2 ‖A1/2u‖4, (12)∣∣∣∣∫

Ω
Pσ (w · ∇)u ·A1/2w dx

∣∣∣∣
≤ C ‖A1/2w‖ ‖A3/4u‖ ‖A1/2w‖

≤ C ‖A3/4w‖ ‖A1/4w‖ ‖A3/4u‖

≤ 1
6
‖A3/4w‖2 + C ‖A1/4w‖2 ‖A3/4u‖2, (13)∣∣∣∣∫

Ω
(Pσg − Pσf) ·A1/2w dx

∣∣∣∣
≤ ‖Pσg − Pσf‖ ‖A1/2w‖

≤ 1
6
‖A3/4w‖2 + C ‖Pσg − Pσf‖2 (14)

which hold on(0, T ∗). We have also used the estimate
‖A1/2w‖ ≤ C ‖A3/4w‖ in (14). Using (9) and (11)–
(14), we obtain

d
dt

1
2
‖A1/4w‖2 +

(
1
2
− C ‖A1/4w‖

)
‖A3/4w‖2

≤ C
(
‖A1/2u‖4 + ‖A3/4u‖2

)
‖A1/4w‖2

+C ‖Pσg − Pσf‖2. (15)

We denote

ζ(t) = ‖A1/2u‖4 + ‖A3/4u‖2,

ϑ(t) = ‖Pσg − Pσf‖2.
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Then we can write (15) in the form

d
dt
‖A1/4w‖2 +

(
1− c2 ‖A1/4w‖

)
‖A3/4w‖2

≤ c3 ζ(t) ‖A1/4w‖2 + c4 ϑ(t). (16)

The integral ofζ on each time interval which is con-
tained in (0, T ) is less than or equal toc5 where
c5 denotes the left hand side of (5). Let us com-
pare function‖A1/4w‖2 with function z such that
z(0) = ‖A1/4w(0)‖2 andz satisfies the estimate

z′ ≤ c3 ζ(t) z + c4 ϑ(t). (17)

Integrating (17), we obtain that

z(t) ≤ e
R t
0 c3 ζ(τ) dτ z(0)

+
∫ t

0
e
R t
s c3 ζ(τ) dτ c4 ϑ(s) ds

≤ ec3c5 z(0) + ec3c5 c4

∫ t

0
ϑ(s) ds (18)

for all t ∈ (0, T ). Obviously,

‖A1/4w(t)‖2 ≤ z(t) (19)

on each interval(0, T ′) such that

1− c2 ‖A1/4w(t)‖2 ≥ 1
2

(20)

also holds on(0, T ′). This implies that provided

ec3c5 ‖A1/4w(0)‖2

+ ec3c5 c4

∫ +∞

0
ϑ(s) ds ≤ 1

2c2
, (21)

(19) holds as long as the solutionv exists as a strong
solution. However, using the well known theorem on
the local in time existence of a strong solution (see
e.g. O. A. Ladyzhenskaya [5]) and particularly the
theorem which enables to consider the initial value in
D1/4 (G. P. Galdi [1]), we can now proceed with the
interval of existence of the strong solutionv up toT .

The inequality (21) is clearly satisfied if the left
hand side in (6) is sufficiently small, i.e. ifδ > 0 is
sufficiently small. The inequalities (18) and (19) then
imply the uniform estimate of‖A1/4w‖2 on the time
interval (0,+∞) by the right hand side of (18). The
uniform estimate of the integral of‖A3/4w‖2 on(0, t)
then easily follows from (16), if we integrate it with
respect to time.

Thus, using the identityw = v−u and the prop-
erties ofu (namely the estimate (5)), we get (7). Nat-
urally, (7) implies thatv ∈ L∞(0, T ; D(A1/4)) ∩
L2(0, T ; D(A3/4)), too. ut

Remark 2 The inequalities (7) and (8) imply that un-
der the assumptions of Theorem 1,∫ T

0
‖A1/2v(s)−A1/2u(s)‖4 ds ≤ ε2. (22)

3 Large perturbations of the initial
velocity

We assume thatf is a fixed specific body force which
belongs toL2(0,+∞; H). We shall only consider
perturbations of the initial velocity in this section.

In [6] and [7], B. Scarpellini constructed a strong
global solution (i.e. a strong solution on the time in-
terval (0,+∞)) of the Navier–Stokes equation with
arbitrarily large initial velocity in the norm‖A1/2. ‖.
One of possibilities how to extend this results is to
construct a global strong solution with an initial ve-
locity which is arbitrarily large in the norm‖Aα. ‖
for someα < 1

2 . However, it can be easily done by
means of Theorem 1: ifT = +∞ andu is a solution
with the properties named in Theorem 1, ifδ > 0 is
the number given by Theorem 1 (corresponding e.g. to
ε = 1), 1

4 < α ≤ 1
2 andR > 0 is an arbitrarily large

real number then there existsv0 ∈ D(Aα) such that
‖A1/4v0 − A1/4u0‖ < δ and‖Aαv0‖ > R. Due to
Theorem 1 there exists a unique global strong solution
v of the problem (1)–(4) with the initial velocityv0.

Our goal in this section is to prove the following
theorem which shows that there exists a locally in time
strong solutionv of the problem (1)–(4) such that the
norm‖Aα. ‖ (with 1

4 < α ≤ 1
2 ) of v(0) is arbitrarily

large and the norm‖Aγ . ‖ (with 3
4 < γ < 1) of v(ξ)

can be arbitrarily small at a time instantξ arbitrarily
close to zero. In fact, we shall prove even something
more: solutionv has the property that its valuev(ξ)
belongs to an arbitrarily chosen open setU in D(Aγ).

Theorem 3 Suppose that34 < γ < 1, 1
4 < α ≤ 1

2 ,
U is a nonempty open subset ofD(Aγ), R > 0 (ar-
bitrarily large), χ > 0 (arbitrarily small). Then there
existsv0 ∈ D(A), T > 0 and a weak solutionv of
the problem (1)–(4) such thatv ∈ C([0, T ); D(Aγ)),

‖Aαv0‖ ≥ R (23)

and
v(ξ) ∈ U (24)

at some instant of timeξ ∈ (0, T ) such thatξ < χ.

The theorem generalizes Scarpellini’s result from
[7] in the point which concerns the exponentα in (23):
B. Scarpellini worked with the fixedα = 1

2 .
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Proof. SinceU is an open set inD(Aγ), there exist
u0 ∈ D(A), T > 0, µ > 0 and a strong solutionu of
the problem (1)–(4) on a time interval(0, T ) such that
u ∈ C([0, T ); D(Aγ)) and

Bµ(u(t)) ⊂ U (25)

for everyt ∈ [0, T ). (The symbolBµ(u(t)) denotes
the ball inD(Aγ) with the center atu(t) and with the
radiusµ.)

Let ε > 0 be given. Due to Theorem 1, there
existsδ > 0 such that if

‖A1/4v0 −A1/4u0‖ < δ

then there exists a strong global solutionv of problem
(1)–(4) on(0, T ) with the initial velocityv0 and the
right hand sidef (which is not perturbed) such that
(7) holds for allt ∈ (0, T ). v0 can be chosen so that
it satisfies (23).

Then in each time interval whose length exceeds
l, there existsτ such that‖A3/4v(τ)−A3/4u(τ)‖2 <
ε/l. Hence if we again use the notationw = v − u,
we have

‖A1/2v(τ)−A1/2u(τ)‖4 = ‖A1/2w(τ)‖4

≤ ‖A1/4w(τ)‖2 ‖A3/4w(τ)‖2 ≤ ε2

l
.

If the considered interval is(0, χ∗/2) (whereχ∗ =
min{χ; T}) thenτ ∈ (0, χ∗/2) and

‖A1/2v(τ)−A1/2u(τ)‖ ≤
(

2ε2

χ∗

)1/4

. (26)

According to Proposition 3.4 in [7], toµ > 0, χ∗ and
τ (identical with theµ, χ∗ and τ used above) there
existsη > 0 such that the inequality

‖A1/2v(τ)−A1/2u(τ)‖ ≤ η

implies that

‖Aγv(t)−Aγu(t)‖ ≤ µ (27)

for all t ∈ (3
4χ
∗, χ∗). If ε > 0 is chosen so small that

the right hand of (26) is less thanη then due to (25)
and (27),v(t) ∈ Bµ(u(t)) ⊂ U . Thus, we can finally
putξ to be equal to an arbitrary point from(3

4χ
∗, χ∗).
ut

Remark 4 Choosing setU to be a sufficiently small
neighborhood of zero (in the spaceD(Aγ)), Theorem
3 provides solutionv which has the so called “big fall”
at a very short instant of time(0, ξ). If, in addition, we
assume that the specific body forcef is “sufficiently

small” then solutionv, due to its smallness at timeξ,
can be prolonged as a strong solution onto the whole
time interval(0,+∞).

Further interesting theorems on global in time
strong solutions which initially have “big falls” can
be found in preprints [8] and [9] by Z. Skalák.
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[8] Z. Skaĺak: Fast decays of strong solutions of the
Navier–Stokes equations. Preprint of the Czech
Technical University Prague, 2005.
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