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Abstract: - We show that a strong solutiam of the Navier—Stokes initial-boundary value problem which is in a
certain sense bounded and integrable on the time intélvatoo), is stable with respect to small disturbances of

the initial velocity in the norm| A'/%. || (where|| . || is the L?>~norm andA is the Stokes operator) and to small

disturbances of the right hand side.
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1 Introduction

Let Q c R3 be a bounded domain with the boundary
99 of the Holder clasg?*4 for somes > 0. Suppose
that0 < 7' < +oo. PutQr = Q x (0,7). We
deal with the initial-boundary value problem for the
Navier—Stokes equation

?;: —vAu+ (u-V)u+Vp = f inQr, (1)
diveu = 0 inQr, (2)

w = 0 IndQx(0,T), 3)

w(0) = wy inQ. 4)

u denotes the velocity; denotes the pressurejs the
kinematic coefficient of viscosity and is a specific
body force. We further assume for simplicity thet

1. (This assumption does not influence the validity of
our results.)

We denote byH the closure ofC3o (€2) (the
space of infinitely differentiable divergence—free vec-
tor functions in2 which have a compact supportsir)
in L2(2)3. The norminL?(Q)?3 (and inH) is denoted
by | .|. PutA = —F, A whereP; is the orthogonal
projection ofL?(2)3 onto H. A is the Stokes operator
with the domainD(A) = W22(Q)3NW,*(Q)* N H.
D(A) is the Banach space with the nofi . || which
is equivalent with the norm of’22(Q)3. It is well
known that operatoA is self—adjoint and positive (see
e.g. Y. Giga[2] and[3]). Other properties of the Stokes
operator are in greater detail described in the book [10]

fractional powers ofd. It can be shown thab(A*)
is not only the domain ofi#, but it can be treated as
the Banach space with the notfd*. || (for 1 > 0).

2 Small perturbations of the initial
velocity in the norm of D(A!/4)

Theorem 1 Let u be a strong solution of the prob-
lem (1)—(4) and with the input data(0) = uy €
D(AY%), P, f € L*(0,T; H). Letu satisfy

/T@ﬁ“mm2+MV%wwyﬂ<am(a
0

Then to giverr > 0, there exists) > 0 such that if
vy € D(AY*Y), P,g € L*(0,00; H) are functions
satisfying

[AY A0y — AV
T
[ s0 - RewP <5 ©)

then there exists a unique strong solutionof the

problem (1)—(4) with the data, and g (instead of

up and f) on the time interval0, +o0), satisfying
1A Ao (t) — AV u(t)|?

t
+/ |A¥ 40 (s) — A u(s)|2ds < ¢ (7)
0

by W. Varnhorn. It makes therefore sense to consider forall t € (0,7).
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If T = +o00 then Theorem 1 provides the infor- i.e. the constant whose value may change from line
mation on stability of solution. to line. On the other hand, numbered constants will
A similar result (withT = +o0) was already have a fixed value throughout the whole paper. The
proved by G. Ponce et al. in[4]. However, our assump- constants will always depend only on doméin We
tion (6) is weaker because we measure the difference shall also use the inequality
between the initial velocitiesy andug in the norm

||A1;4. || while the authors of [4] were using the norm By (¢p- V)| < 1 ||AY20| |A% %] (10)
A2,
The assumption that the strong solutiansat- which holds forevery € D(AY/2)andyp € D(A%/4)

isfies (5) is not restricting because the strong so- (see [7], estimate (2.5)). Thus, we get the inequalities
lution on the interval (0,7") usually belongs to
L>(0,T; D(AY?))NL?(0,T; D(A)) and then it sat-
isfies (5) automatically. In fact, it is sufficient if
u € L®(0,T; D(AY*)) n L*(0,T; D(A**)) be- < O AYV2w]) | A3 *w|| | AV 2w||
cause then, using the obvious inequality

< C A w|? | AV ], (11)

/ P(w-V)w - AY?wdx
Q

|AY2ap || < [|AVAap|| /2 || A3 4] V2 (8)
P (u-V)w - AYV?wde

which holds for everyy € D(A%/*), we get
T
/ | A2 (r) | e
0
T
/‘rA”%meHAW%Adet
0

T
< sup ess |]A1/4u(t)\|2/ | A3 () || at
0

To0<t<T

CllAY?u | A w|| AT ]
C[|AY w2 | A A | /2 | AV 2|

IN N S~

IN

1
5 147 w]? 4+ C AV w| | APl (12)

IN

P(w-V)u- AV ?wda

NS

C |42 w] | 4% 4u] | AV 2w
C 4% w || AV o[ 4% Hu

< +00.

IN

Proof of Theorem 1: Sincewv(0) € D(A'Y4), there
existsT* > 0 such thatv is a strong solution on
(0,T*). Thenw = v — u satisfies the equation

IN

S A4¥ ) 4+ C AV 4%, (13)

Pg F f)- Al/gwdm

\

w+ Aw + B (w - V)w + F (u- V)w
4P (w-Viu=PBg—PBf S HPg B £ | AV w)
3/4 2 2
on (0, 7). Multiplying it by A'/2w and integrating = g 1A% w|? + O || P g — B> | (14)
on 2, we obtain
which hold on(0, 7). We have also used the estimate
HA1/4 12 + (| A3/ 4ew| 2 |AY2w| < C'||A%/4w]| in (14). Using (9) and (11)—
dt 2 (14), we obtain

< /Pa(w-V)'w~A1/2wdm
Q

=3I
< O (A2l + |47 ) ?) | AV ]

1 1
Al (5 - clat ] ) 4%
+ /PU(U-V)'w-Al/Q'wda:

Q

+ /Pa(w~V)u-A1/2wd:1:
Q

+C||Pg - B f|* (15)

+ / (P,g — B f) - AV wda 9) We denote
0

_ 1/2,, 114 3/4,. 112
We will now estimate the integrals on the right hand <) 1 A7 7+ 1A%
side of (9). We shall denote iy a generic constant, 9t) = ||Bg— B fl*
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Then we can write (15) in the form

A1/, 2 _ 1/4 3/4, 112
1A w2 4 (1= ey A ] ) |4 4w
< e C(t) AV w1 + ea o). (16)

The integral of¢ on each time interval which is con-
tained in (0,7) is less than or equal to; where
cs denotes the left hand side of (5). Let us com-
pare function||A'/4w]||?> with function = such that
2(0) = ||AY*w(0)||? and satisfies the estimate

2 < egC(t) 2+ ca O(t). (17)
Integrating (17), we obtain that
R
2(t) < eoelar )

< .
—|—/ e s 3T ¢ () ds
0

¢
< e 2(0) + %% ¢y / ¥(s) ds (18)
0

forall t € (0,7"). Obviously,

1A w(t)|* < (1) (19)
on each interval0, 7”) such that
oAl w@? > 5 (@0)

also holds or{0, 7). This implies that provided

e | A w(0)*
+o00 1
+ %% 64/ 9(s)ds < —, (21)
0 202

(19) holds as long as the soluti@nexists as a strong
solution. However, using the well known theorem on
the local in time existence of a strong solution (see
e.g. O. A. Ladyzhenskaya [5]) and patrticularly the
theorem which enables to consider the initial value in
D'/* (G. P. Galdi [1]), we can now proceed with the
interval of existence of the strong solutiorup toT'.

The inequality (21) is clearly satisfied if the left
hand side in (6) is sufficiently small, i.e. & > 0 is
sufficiently small. The inequalities (18) and (19) then
imply the uniform estimate df A'/*w||? on the time
interval (0, +o0) by the right hand side of (18). The
uniform estimate of the integral ¢f43/4w||? on (0, t)
then easily follows from (16), if we integrate it with
respect to time.

Thus, using the identityw = v — « and the prop-
erties ofu (namely the estimate (5)), we get (7). Nat-
urally, (7) implies thatv € L>(0,T; D(AY*)) n
L2(0,T; D(A3/%)), too. 0

Remark 2 The inequalities (7) and (8) imply that un-
der the assumptions of Theorem 1,

T
/ |AY 20 (s) — AV 2u(s)|[*ds < . (22)
0

3 Large perturbations of the initial
velocity

We assume thaf is a fixed specific body force which
belongs toL?(0, +oco; H). We shall only consider
perturbations of the initial velocity in this section.

In [6] and [7], B. Scarpellini constructed a strong
global solution (i.e. a strong solution on the time in-
terval (0, +00)) of the Navier—Stokes equation with
arbitrarily large initial velocity in the nornfi A'/2.|.
One of possibilities how to extend this results is to
construct a global strong solution with an initial ve-
locity which is arbitrarily large in the nornfjA®. ||
for somea < % However, it can be easily done by
means of Theorem 1: if = +oco andw is a solution
with the properties named in Theorem 1§it> 0 is
the number given by Theorem 1 (corresponding e.g. to
e=1),1 <a<iandR > 0isan arbitrarily large
real number then there existg € D(A®) such that
|AY 4wy — AV4ug| < 6 and||A%vg|| > R. Due to
Theorem 1 there exists a unique global strong solution
v of the problem (1)—(4) with the initial velocity,.

Our goal in this section is to prove the following
theorem which shows that there exists a locally in time
strong solutiorv of the problem (1)—(4) such that the
norm||A®. || (with § < o < 1) of v(0) is arbitrarily
large and the normjA™. || (with 2 < v < 1) of v(&)
can be arbitrarily small at a time instafiarbitrarily
close to zero. In fact, we shall prove even something
more: solutionv has the property that its valug¢)
belongs to an arbitrarily chosen open Eein D(A”).
Theorem 3 Suppose tha < v < 1, 1 < o < £,
U is a nonempty open subsetBf A7), R > 0 (ar-
bitrarily large), x > 0 (arbitrarily small). Then there
existsvg € D(A), T > 0 and a weak solutiom of
the problem (1)—(4) such thate C([0,7); D(A")),

[A%vo] = R (23)
and
() €U (24)

at some instant of timg € (0, 7") such thatt < .
The theorem generalizes Scarpellini’s result from

[7] in the point which concerns the exponenin (23):
B. Scarpellini worked with the fixed = 1.
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Proof. SinceU is an open set iD (A7), there exist
ug € D(A), T > 0, u > 0 and a strong solution of
the problem (1)—(4) on a time intervdl, ') such that
u € C([0,T); D(A")) and
Bu(u(t)) cU (25)

for everyt € [0,7T). (The symbolB, (u(t)) denotes
the ball inD(A”) with the center at(t) and with the
radius:.)

Let e > 0 be given. Due to Theorem 1, there
existsd > 0 such that if

| AV Ay — AV Ay < 6

then there exists a strong global solutiwof problem
(1)—(4) on(0,T") with the initial velocity vy and the
right hand sidef (which is not perturbed) such that
(7) holds for allt € (0,T). vy can be chosen so that
it satisfies (23).

Then in each time interval whose length exceeds

1, there exists such that| A%/ v () — A3/ 4u(7)|]? <
e¢/l. Hence if we again use the notatian= v — w,
we have

1A 20(7) — APu(r)||* = ||AYw(r)]!

< A (@) 4w (@) < T
If the considered interval i0, x*/2) (wherex* =
min{y; 7'}) thent € (0, x*/2) and

[\

262 1/4
4200 - 4t < (35) . o)
According to Proposition 3.4 in [7], tp > 0, x* and
7 (identical with theu, x* andr used above) there
existsn > 0 such that the inequality

1420 (1) — AYPu(r)|| < n
implies that

[ATv(t) = ATu(t)] < p (27)
forallt € (3x*, x*). If e > 0is chosen so small that
the right hand of (26) is less thanthen due to (25)
and (27)w(t) € B,(u(t)) C U. Thus, we can finally
puté to be equal to an arbitrary point fro(ﬁx*, X¥).

0

Remark 4 Choosing sel to be a sufficiently small
neighborhood of zero (in the spatk A7)), Theorem
3 provides solutiom which has the so called “big fall”
at a very short instant of tim@, £). If, in addition, we
assume that the specific body forgds “sufficiently

small” then solutiorw, due to its smallness at tinge
can be prolonged as a strong solution onto the whole
time interval(0, +o0).

Further interesting theorems on global in time

strong solutions which initially have “big falls” can
be found in preprints [8] and [9] by Z. Skak.
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