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Abstract: - Using Computer Algebra Software (CAS) certain work about symbolic computational hydrogeology 
is realized. The explicit solutions for the boundary value problems that correspond to a confined aquifer with 
various forms of non constant pumping rates, are derived.  Many different cases are considered and the 
corresponding solutions are given in terms of Whittaker functions which are generalizations of the usual Theis 
well function. The method of solution is the Laplace Transform Technique. This method is implemented at fully 
using only CAS. The solutions are obtained by means of certain algorithm. As a result we obtain the explicit 
forms of the drawdown profiles for the various pumping regimes that were considered. and also we do some 
exercises with our solutions applying the notion of image well. From our results is possible to derive new 
protocols for estimating aquifer properties. 
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1.   Introduction 
Mathematical Hydrology is a source of very 
interesting computational problems at such way that 
is possible to speak about a new emergent scientific 
discipline named Computational Hydrology (CH). 
The CH have two faces. The first face is the Numeric 
Computational Hydrology (NCH) which refers to  
hydrologic problems that are solved using numerical 
analysis and software for numerical computations 
(Matlab). The second face is named Symbolic 
Computational Hydrology (SCH) and consists in to 
obtain analytical solutions for hydrologic problems 
using mathematical analysis implemented by 
Computer Algebra Software (CAS)(Mathematica, 
Maple) [1,2]. The NCH is actually intensively studied 
but the SCH is a domain that remains practically 
unexplored. The object of the present work is to 
explore the lands of the SCH.  We intend to present, 
some examples of problems on SCH. Such problems 
are concerned with the computation of the analytical 
solutions for the case of a confined aquifer with a 
well which is working according with a pumping rate 
variable on time. We obtain some generalizations of 
the well known Theis solution [3]. Such 
generalizations are given in terms of Whittaker 
functions [4]. 

The mathematical method that is used in this work is 
the Laplace Transform Technique fully implemented 
using CAS (Maple). It is verified that Maple is a very 
powerful tool for the development of the SCH. 
 
 
2   The Mathematical Problem 
We consider a confined aquifer with a well pumping 
at a rate that is changing with the time according to 
an arbitrary function.  This configuration is a 
generalization of the configuration originally studied 
and solved by Theis for the case of constant pumping 
rate [3]. We assume as valid the same assumptions 
originally introduced by Theis, with the only 
difference that here the pumping rate is an arbitrary 
function of time.  The mathematical model that  was 
used by Theis is a diffusion equation with a sink of a 
form of Dirac delta function, that represents a well of 
infinitesimal radius. Such diffusion equation with 
Dirac term is complemented with adequate initial 
conditions without other boundary conditions. But the 
Dirac term can be extracted from the equation and 
can be converted in a new boundary condition and 
such way that the mathematical model to consider 
here is the following  general boundary value 
problem  [5,6] 
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where  k is the hydraulic diffusivity, S(r,t) is the 
observed  drawdown at a distance r from the pumping 
well, k1 is the aquifer transmissivity and Q(t) gives 
the variation on time of the pumping rate. The 
equation (1) is the diffusion equation for the 
drawdown, the equation (2) represents the initial 
condition of a non perturbed aquifer, the equation (3) 
gives the natural condition at infinite and the equation 
(4) is the condition for a extracting well  of very 
small radius with a pumping rate Q(t). 
 
We consider here a general form for Q(t), namely 

 = ( )Q t ∑
 = n 0

∞

Qn tn

                                                   (5)
 

where Qn are constants. Some concrete examples that 
we want to explore here are: 
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The case of (6) is the original problem considered by 
Theis [3]. The case (10)  with ε = i w, was studied in 
[5]. 
Then the mathematical problem that is proposed and 
solved in this work consist in to obtain the analytical 
solution of the equations (1)-(4) with the 
specifications (5)-(12). The Theis solution is re-
derived and alternative formulas respect to that are 
given at [5,6], are obtained  for the case of 
sinusoidal pumping rate. 
 
 
3   Problem Solution 
The boundary value problem (1)-(4) with the 
specifications (5)-(12) is a linear problem with 

computable analytical solution [6]. But such solution  
can not be obtained  by means of the method of 
separation of variables. It is necessary to apply the 
Laplace Transform method. Since the necessary 
manipulations to solve the equations (1)-(4) with (5)-
(12) are too voluminous as for to be realized by hand 
with pencil and paper, it is necessary to apply some 
type of system of computer algebra that allows 
symbolic computation [1,2].  In this work the method 
of Laplace transform was implemented at fully using 
only CAS with an appropriate algorithm. A very 
useful mathematical tools for this work was the 
theory of Whittaker functions [4]. In the following 
subsection our method of solution is described more 
detailed. 
 
 
3.1.  Method of Solution 
A sketch of the algorithm that we have used to solve 
(1)-(4) for all specifications (5)-(12) is as follows. 
The inputs of the algorithm are:  Eq, that represents 
the equation (1); I.C. that represents the initial 
conditions (2) and  B.C. that represents the boundary 
conditions (3)-(4). 
The output for the algorithm is the explicit profile for 
the drawdown it is to say the analytical form of the 
function S(r,t). Our algorithm operates at the 
following way: 
The inputs Eq., I.C., and B.C,  by means of a Laplace  
Transformer are turned into a transformed equation 
denoted T.Eq.  and a transformed boundary condition 
denoted T.B.C. Then, T.Eq and T.B.C. are processed 
by a certain Dsolver that generates the transformed 
solution denoted Tsol.  
Next,  Tsol is processed by means of an inverser , and 
we obtain the explicit form of the solution, denoted 
sol.  
We implement such algorithm using Maple [2]. There 
are three ways to do that: using a worksheet, using a 
procedure and using a package. In this work we use a 
procedure which is constructed with Maple. Such 
procedure is the following: 
 

> restart:     (B1) 
↓ 

>Hydro:=proc(Q):(B2) 
↓ 

>with(inttrans):(B3) 
↓ 

> eq:=diff(S(r,t),t)-
k/r*(diff(S(r,t),r)+r*dif
f(S(r,t),`$`(r,2)))=0: B4

↓ 
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>eqp:=subs({laplace(S(r,t)
,t,s)=V(r),S(r,0)=0},laplac
e(eq,t,s)):           (B5) 

↓ 
>assume(s>0,k>0): 
 
>assume(m::positive):(B6) 

↓ 
>sol:=dsolve(eqp,V(r)):B7 

↓ 
>aux:=_C2=solve(limit(2*pi
*k[1]*r*diff(rhs(sol),r),r=
0)=subs({laplace(t^n,t,s)=n
!/s^(n+1)},laplace(Q,t,s)),
_C2):             (B8) 

↓ 
>sol2:=subs({_C1=0,aux},so
l):                 (B9) 

↓ 
>S(r,t)=invlaplace(rhs(sol
2),s,t);           (B10) 

↓ 
> end proc:     B(11) 

This Maple procedure, is named Hydro as we can see 
in the block (B2). The block (B3) loads the Maple 
package for integral transforms. In the block (B4) the 
equation (1) is introduced inside the Maple 
environment . In the block (B5) the laplace 
transformation of the equation (1) with (2) is made. 
The block  (B6) introduces the necessary assumptions 
for computations and the block (B7) is the Dsolver of 
the transformed equation. The block (B8) applies the 
boundary condition (4) and the block (B9) introduces 
the boundary condition (3). Finally the block (B10), 
makes the inverse laplace transformation  and then 
the analytical form of S(r,t) is obtained. The block 
(B11) is the control command for the finalization of 
the procedure. 
Our procedure Hydro, can be visualized as a black 
box that transform certain pumping rate variable on 
time Q(t), in to the analytical form of S(r,t). 
For the applications, being previously loaded the 
procedure Hydro, the activation command is: 

> Hydro(Q(t)); 
 
 
3.2.  Results of Computations 
Here we present the results of computations for 
pumping rates corresponding to the equations (5)-
(12). 
Explicitly, for Q(t) given by (6), we use the command  

> Hydro(Q); 
and the result is 

 = ( )S ,r t −
1
4
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⎝
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where Ei(x) is the Exponential integral function [7]. 
This is justly the original Theis solution for a constant 
pumping rate of a well within a confined aquifer [3]. 
Now for Q(t) given by (7), we apply the command 

> Hydro(Q*t); 
and the answer is 
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where W(u,v,x) is the Whittaker function with 
parameters u and v and with argument x [4]. 
When the pumping rate are changing on time as (8), 
we use the command 

> Hydro(Q*t^2); 
and the result is 
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where the Whittaker functions appear again. 
More generally  for the pumping rate given by (9) 
the command is 

> Hydro(Q*t^n); 
and the result is 
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Now for the general  Q(t) with the form (5) we use 
the command 
>Hydro(Sum(Q[n]*t^n,n=0..infinity); 
and the result is  
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Similarly for the pumping rate of the form (10) we 
use the command 
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>Hydro(Sum(Q*(epsilon*t)^n/n!,n=0
..infinity)); 
and the result is 
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For the pumping rate of the form (11) we use the 
expansion  

 = Q t e
( )ε t ∑
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∞ Q ( )ε t
( ) − n 1
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                            (19) 
and then we apply the command 
>simplify(Hydro(Sum(Q*(epsilon*t)^(n

-1)*t/(n-1)!,n=1..infinity))); 
for hence the result is 
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Finally for the more general pumping rate that is 
considered here, given by (12); we use the expansion 
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( )ε t ∑
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and we can use the following command 
> Hydro(Sum(Q*(epsilon)^(n-
m)*t^n/(n-m)!,n=m..infinity)); 
which produces the result 
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3.3.  Analysis of  Results 
It is clear that (22) contains as particular cases all the 
results (13)-(20). In particular, the Theis solution can 
be  obtained from (22) with m=0 and ε=0 .  From the 
other side the case m=0 and ε=iw, was considered in 
[5] and the result was established in terms of Bessel 
functions [7].  Here we have an alternative formula in 
terms of Whittaker functions [4]. 
Now we want to show the effective expansions for 
the solutions (13)-(22)  when t  ∞. The results are 

displayed at Table 1. In this table the equations (23)-
(30) are respectively the approximations of the exact 
equations (13)-(18), (20) and (22). In the expansions 
of the Table 1, γ is the Euler’constant [7], namely, γ 
= 0.5772 and Ψ(x) is the Digamma function [8]. As 
the reader can note, the leading term of (23) is 
obtained from (26) with n=0 and with Ψ(1)=-γ. 
Also, the leading term of (23) is obtained from (30) 
with m=0, ε = 0 and again with Ψ(1)=-γ. As we can 
observe  for all expansions (23)-(30), the leading 
term is logarithmical respect to the distance r and the 
time t. 
 
 
3.3.  Applications  of  Results 
All the results that were derived, the equations (13)-
(22) are generalizations of the original Theis 
equation and hence these equations are valid only 
for infinite and confined aquifers.  In the case of 
semi-infinite aquifers with boundaries it is possible 
to use the method of images. For example in the case 
of an aquifer bounded by a river and with a well 
with pumping rate given by (12), the total drawdown 
is the sum of the drawdown that is produced by the 
pumping well and the drawdown corresponding to 
the image well. The total drawdown for this 
configuration is showed at Figure 1. The result is 
presented inside a Maple environment using the 
procedure Hydro(Q) and the results (22) and (30). In 
the Figure 1, r1 is the distance from the observation 
point to the pumping well and r2 is the distance from 
the observation point to the image well. We observe 
in Figure 1 that the total drawdown S(r1 , r2  , t) is 
quasi-stationary  when t  ∞. 
Another possible application of our  results (14)-(22) 
is concerned with the elaboration of a protocol for 
the experimental determination of the geo-hydraulic 
properties of aquifers using pumping tests [5]. This 
issue can be the object of a possible future work.  
Another line of future research is the extension of 
the results that were obtained here for the case of 
semi-confined or leaky aquifers [9]. 
 
 
4   Conclusions  
This work was an  intend to bring the reader some of 
the taste of Symbolic Computational Hydro-
geology. The example that was chosen corresponds 
to the case of a confined aquifer with a non constant 
pumping rate. The authors believe that some of the 
results that were presented here are new in 
Mathematical Hydro-geology. Such results can be 
considered as generalizations of the Theis formula.  
Our results can have practical applications in 
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hydrogeology, particularly in the field of new 
protocols for characterization of aquifers. We 
confirm the high importance of Computer Algebra 
Software, particularly Maple, inside the domain of 
Mathematical Hydrology.  Using Maple all the 
results that were presented, are easily obtained. 
From the work that was done we can note the great 
relevance of the theory of Whittaker functions for 
the Mathematical Hydrogeology. Finally we 
conclude that the new emergent discipline, named, 
Symbolic Computational Hydro-geology has a very 
prominent future. 
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Figure 1. Total drawdown for a semi-infinite confined aquifer bounded by a river 
 and with a well with pumping rate of the form (12). The method of image well is applied. 

Pumping Well: 
Using (22) with Q 

Using  
(30)

Image Well: 
Using (22) with -Q 

Simplification 

Quasi-stationary 
flow  
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