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Abstract: The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can
be described by the nonlinear Navier-Stokes equations (N). This description corresponds to the so-called Eulerian
approach. We develop a new approximation method for (N) in both the stationary and the nonstationary case by
a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by
the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate
solutions with a high degree of regularity, which contains a convergent subsequence with limit function v such that
v is a weak solution on (N).
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1 Introduction
For the description of fluid flow there are in
principle two approaches, the Eulerian ap-
proach and the Lagrangian approach. The
first one describes the flow by its velocity
v = (v1(t, x), v2(t, x), v3(t, x)) = v(t, x) at
time t in every point x = (x1, x2, x3) of the domain
G containing the fluid. The second one uses the trajec-
tory x = (x1(t), x2(t), x3(t)) = x(t) = X(t, 0, x0)
of a single particle of fluid, which at initial time
t = 0 is located at some point x0 ∈ G. The second
approach is of great importance for the numerical
analysis and computation of fluid flow also involving
different media with interfaces [2, 3, 5, 8], while the
first one has also often been used in connection with
theoretical questions [4, 6, 7, 9].

It is the aim of the present note to develop a
new approximation method for the nonlinear Navier-
Stokes equations by coupling both the Lagrangian and
the Eulerian approach. The method avoids fixpoint
considerations and leads to a sequence of approximate
systems, whose solution is unique and has a high
degree of regularity, important at least for numerical
purposes. Moreover, we can show that our method
allows the construction of global weak solutions of
the Navier-Stokes equations (compare [2, 4] for a
local theory): The sequence of approximate solutions
has at least one accumulation point satisfying the
Navier-Stokes equations in a weak sense [6].

2 The Stationary Navier - Stokes
Equations

We consider the stationary motion of a viscous incom-
pressible fluid in a bounded domain G ⊂ R3 with a
sufficiently smooth boundary S. Because for steady
flow the streamlines and the trajectories of the fluid
particles coincide, both approaches mentioned above
are correlated by the autonomous system of character-
istic ordinary differential equations

x′(t) = v(x(t)), x(0) = x0 ∈ G, (1)

which is an initial value problem for

t −→ x(t) = X(t, 0, x0) = X(t, x0)

if the velocity field x −→ v(x) is known in G.

To determine the velocity, in the present case
we have to solve the steady-state nonlinear equations

−ν∆v + v · ∇v + ∇p = F in G,

(2)
div v = 0 in G, v = 0 on S

of Navier-Stokes. Here x −→ p(x) is an unknown
kinematic pressure function. The constant ν > 0
(kinematic viscosity) and the external force density
F are given data. The incompressibility of the fluid is
expressed by div v = 0, and on the boundary S we
require the no-slip condition v = 0.
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3 The Lagrangian Approach

Let us start recalling some facts, which concern ex-
istence and uniqueness for the solution of the initial
value problem (1): If the function v belongs to the
space C lip

0 (G) of vector fields being Lipschitz con-
tinuous in the closure G = G ∪ S and vanishing on
the boundary S, then for all x0 ∈ G the solution

t −→ x(t) = X(t, x0)

is uniquely determined and exists for all t ∈ R (be-
cause v = 0 on the boundary S, the trajectories re-
main in G for all times). Due to the uniqueness, the
set of mappings

< = {X(t, ·) : G → G| t ∈ R}

defines a commutative group of C1− diffeomor-
phisms on G. In particular, for t ∈ R the inverse
mapping X(t, ·)−1 of X(t, ·) is given by X(−t, ·),
i.e.

X(t, ·) ◦ X(−t, ·) = X(t, X(−t, ·))
= X(t− t, ·) = X(0, ·) = id,

or, equivalently,

X(t, X(−t, x)) = x

for all x ∈ G. Moreover we obtain det∇X(t, x) = 1
if

v ∈ C lip
0,σ(G) = {u ∈ C lip

0 (G)|div u = 0},

in addition. This important measure preserving prop-
erty implies

〈f, g〉 = 〈f ◦X(t, ·), g ◦X(t, ·)〉

for all functions f, g ∈ L2(G), where 〈·, ·〉 denotes
the scalar product in L2(G).

4 The Eulerian Approach

Next let us consider the Navier-Stokes boundary value
problem (2). It is well known that, given F ∈ L2(G),
there is at least one function v satisfying (2) in some
weak sense [6]. To define such a weak solution we
need the space V (G), being the closure of C∞

0,σ(G)
(smooth divergence free vector functions with com-
pact support in G) with respect to the Dirichlet-norm
‖∇u‖ =

√
〈∇u, ∇u〉, where we define

〈∇u, ∇v〉 =
3∑

i,j=1

〈Djui, Djvi〉.

Let us recall the following

Definition 1 Let F ∈ L2(G) be given. A function
v ∈ V (G) satisfying for all Φ ∈ C∞

0,σ(G) the identity

ν〈∇v, ∇Φ〉 − 〈v · ∇Φ, v〉 = 〈F, Φ〉 (3)

is called a weak solution of the Navier-Stokes equa-
tions (2), and (3) is called the weak form of (2).

For a suitable approximation of the nonlinear term
let us keep in mind its physical deduction. It is a
convective term arising from the total or substantial
derivative of the velocity vector v. Thus it seems to
be reasonable to use a total difference quotient for its
approximation.

To do so, let v ∈ C lip
0,σ(G) be given. Then for

any ε ∈ R the mapping X(ε, ·) : G → G and
its inverse X(−ε, ·) are well defined. Consider for
some u ∈ C1(G) (Cm(G) is the space of continuous
functions having continuous partial derivatives up to
and including order m ∈ N in G) and x ∈ G the
one-sided Lagrangian difference quotients

Lε
+ u(x) =

1
ε

[u(X(ε, ·)) − u(x)] ,

Lε
− u(x) =

1
ε

[u(x) − u(X(−ε, ·))] ,

and the central Lagrangian difference quotient

Lε u(x) =
1
2

(
Lε

+ u(x) + Lε
− u(x)

)
. (4)

Since for sufficiently regular functions

Lε
− u(x) −→ v(x) · ∇u(x)

and
Lε

+ u(x) −→ v(x) · ∇u(x)

as ε → 0, the above quotients can all be used for the
approximation of the convective term v · ∇v. There
is, however, an important advantage of the central
quotient (4) with respect to the conservation of the
energy:

Let v ∈ C lip
0,σ(G) and u, w ∈ L2(G). Let X(ε, ·)

and X(−ε, ·) denote the mappings constructed
from the solution of (1). Then, using the measure
preserving property from above, we obtain only for
the central quotient the orthogonality relation

〈Lε u, u〉 = 0. (5)
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5 The Stationary Approximate
System

To establish an approximation procedure we assume
that some approximate velocity field vn has been
found. To construct vn+1 we proceed as follows:

1) Construct Xn = X( 1
n , ·) and its inverse

X−n = X(− 1
n , ·) from the initial value prob-

lem

x′(t) = vn(x(t)), x(0) = x0 ∈ G. (6)

2) Construct vn+1 and pn+1 from the boundary
value problem

−ν∆vn+1 +
n

2
[vn+1 ◦Xn − vn+1 ◦X−n]+

+∇pn+1 = F in G,

div vn+1 = 0 in G,

vn+1 = 0 on S. (7)

Concerning the existence and uniqueness for the solu-
tion of (6) and (7) we need the usual Sobolev Hilbert
spaces Hm(G), m ∈ N, which denote the closure of
Cm(G) with respect to the norm ‖ · ‖Hm (see [1]). A
main result is now stated in the following

Theorem 2 a) Assume vn ∈ H3(G) ∩ V (G) and
F ∈ H1(G). Then for all x0 ∈ G the initial value
problem (6) is uniquely solvable, and the mappings

Xn : G → G, X−n : G → G

are measure preserving C1− diffeomorphisms in G.
Moreover, there is a uniquely determined solution

vn+1 ∈ H3(G) ∩ V (G), ∇pn+1 ∈ H1(G)

of the equations (7).
The velocity field vn+1 satisfies the energy equation
ν‖∇vn+1‖2 = 〈F, vn+1〉.

b) Assume v0 ∈ H3(G) ∩ V (G) and F ∈ H1(G).
Let (vn) denote the sequence of solutions constructed
in view of Part a). Then (vn) is bounded in V (G) i.e.
‖∇vn‖2 ≤ CG,F,ν for all n ∈ N, where the constant
CG,F,ν does not depend on n. Moreover, (vn) has
an accumulation point v ∈ V (G) satisfying (3), i.e.
v is a weak solution of the Navier-Stokes equations
(2).

6 The Nonstationary Navier - Stokes
Equations

Let us consider now the motion of a nonstationary
viscous incompressible fluid flow in a bounded
domain G ⊂ R3 with a sufficiently smooth boundary
S. Without loss of generality, in this section we
assume conservative external forces and consider
the following Navier-Stokes initial boundary value
problem:

Construct a velocity field v = v(t, x) und some
pressure function p = p(t, x) as a solution of the
system

vt − ν∆v +∇p + v · ∇v = 0
in G, t > 0,

∇ · v = 0
v = 0 on S, t > 0,
v = v0 for t = 0.

(N)
Here v0 is a suitable prescribed initial velocity
distribution.

The existence of a classical solution global in
time of this problem without any smallness restriction
on the data has not been proved up to now. Hence
also a globally stable approximation scheme does
not exist for this system. In order to construct
classically solvable equations, as in the steady-state
case, an approximation of the nonlinear convective
term v · ∇v, which is responsable for the non-global
existence of the solution, by means of a Lagrangian
difference quotients seems to be reasonable.

In the following we show that the nonstationary
Navier-Stokes system (N) can also be approximated
by means of Lagrangian differences. The resulting ap-
proximate system (Nε) is uniquely solvable, its solu-
tion exists globally in time, has a high degree of regu-
larity and satisfies the nonstationary energy equation.

7 The Initial Value Problem

Let J be a compact time interval, and let ṽ ∈
C(J,H3(G) ∩ V (G)) be a given velocity field being
strongly H3- continuous. Consider the initial value
problem

ẋ(t) = ṽ(t, x(t))
x(s) = x0

, (s, x0) ∈ J ×G (A)

concerning the trajectory x(t) = X(t, s, x0) of a fluid
particle, which at time t = s is located at x0 in G.
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Due to well-known results on ordinary differen-
tial equations, as in the autonomous case, the uniquely
determined general solution X(t, s, x0) of (A) exists
for all times, and the mapping

X(t, s, ·) : G → G, t, s ∈ J

is a measure preserving diffeomorphism with inverse
function

X−1 = X(s, t, ·).
As in the stationary case we now approximate the time
dependent nonlinear convective term v(t, x) ·∇v(t, x)
by a central Lagrangian difference quotient as follows:

v(t, x) · ∇v(t0, x) ∼
∼ 1

2ε

(
v(t0, X(t + ε, t, x))− v(t0 , X(t, t + ε, x))

)
.

(8)
Here ∼ means that for a sufficiently regular function
v the right hand side converges to the expression on
the left hand side as ε → 0.

The main advantage of the central quotient in
(8), which we denote by

1
2ε

(v ◦X − v ◦X−1)

for abbreviation, is again the validity of an analogon
to the orthogonality relation of Hopf [6]:

Using 〈·, ·〉 as L2(G)-scalar product Hopf ob-
tains the global (in time) existence of weak solutions
to the Navier-Stokes system (N) due to the important
orthogonality relation

(v · ∇v, v) = 0, v ∈ V (G).

Using the measure preserving property of the mapping
X , we analogously obtain

1
2ε

(v ◦X − v ◦X−1, v) =

=
1
2ε

(
(v ◦X, v)− (v, v ◦X)

)
= 0,

which implies the validity of the energy equation for
all sufficiently regular solutions of the approximate
system, if central Lagrangian differences instead of
one-sided quotients are used.

8 Time Delay and Compatibility at
Initial Time

To avoid fixed-point considerations for the solution
of the regularized approximate system – the velocity

vector v as well as the mappings X are unknown
– by means of a time delay we replace v · ∇v by
1
2ε (v ◦X − v ◦X−1) with trajectories X constructed
at earlier time points, where the velocity v is known
already.

To do so, on the given time interval [0, T ] we
define a time grid by

tk = k · ε, k = 0, . . . , N ∈ N,

where ε := T
N > 0. Setting

Xk := X(tk, tk−1, x),

for t ∈ [tk, tk+1) we can use e.g. the approximation

v(t, x) ·∇v(t, x) ∼ 1
2ε

(v(t, Xk)−v(t, X−1
k )). (9)

To initiate this procedure we extend the initial value
v0 continuously to a start function

vs ∈ C([−ε, 0],H3(G) ∩ V (G)).

Then, indeed, on the subintervals [tk, tk+1) we can
successively construct the mappings Xk from the
given velocity field v and vice versa. Nevertheless, we
do not obtain a global on [0, T ] existing solution of a
problem regularized by (9). This is due to a certain
compatibility condition, which always occurs in par-
abolic problems at the corner of the space time cylin-
der:
For the unique construction of the mapping Xk, if in-
teger order Sobolev spaces are used, we need a veloc-
ity field

v ∈ C([tk−1, tk],H3(G) ∩ V (G)),

i.e.
vt ∈ C([tk−1, tk], V (G)).

Using

P : L2(G) → H(G) := C∞
0,σ(G)

‖·‖

as orthogonal projection we obtain in particular the
condition

vt(tk) = µP∆v(tk)− (10)

− 1
2ε

P
(
(v(tk, Xk)− v(tk, X−1

k )
)
∈ V (G).

Due to v0 ∈ H3(G) ∩ V (G) we find that the right
hand side of (10) is contained in H1(G)∩H(G), only.
Hence the condition vt(tk) ∈ V (G) implies in case
of an approximation of the type (9) that we have to
impose the condition

µP∆v(tk)− (11)

− 1
2ε

P
(
(v(tk, Xk)− v(tk, X−1

k )
)

= 0 on S.
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9 The Approximate System (Nε)

Instead of a system regularized by (9) we consider

vt − µ∆v +∇p + Zεv = 0
in G for t > 0,

∇ · v = 0
v = 0 on S,

vt = f in G for t = 0,
(Nε)

where f ∈ V (G), and where for t ∈ [tk, tk+1]

Zεv(t, x) :=
1
2ε

(
(t− tk)(v(t, Xk)− v(t, X−1

k ))+

+(tk+1 − t)(v(t, Xk−1)− v(t, X−1
k−1))

)
is continuously defined on [0, T ].

In this case all compatibility conditions are sat-
isfied: The condition for t = 0 can be fulfilled
following a hint of V. A. Solonnikov by prescribing
vt(0) = f ∈ V (G) instead of v(0) = v0:

For a given function

vs ∈ C([−2ε,−ε],H3(G) ∩ V (G))

we solve the problem (A) and obtain the mapping
X−1. Then we consider the stationary problem

νP∆v0 −
1
2ε

P (v0 ◦X−1 − v0 ◦X−1
−1 ) = f,

and obtain by well-known existence and regularity re-
sults a uniquely determined solution

v0 ∈ H3(G) ∩ V (G),

which, since functions in V (G) vanish on the bound-
ary S, satisfies the required compatibility condition
(11). By linear interpolation between vs(−ε) and v0

we then obtain a start function

vs ∈ C([−2ε, 0],H3(G) ∩ V (G)).

Since the compatibility condition in all the following
grid points tk are automatically satisfied due to the
continuity of the function

t → Zεv(t),

we finally obtain, by successively constructing the
mappings fom the velocity field v and vice versa, the
following result:

Theorem 3 Let [0, T ] be given and let f ∈ V (G)
Then for every ε > 0 exists a uniquely determined
function

v ∈ C([0, T ],H3(G) ∩ V (G))

und a uniquely determined pressure gradient

∇p ∈ C([0, T ],H1(G))

as the solution of the system (Nε). For v holds on
[0, T ] the energy equation

‖v(t)‖2 + 2ν

t∫
0

‖v(s)‖2 ds = ‖v0‖2,

and H3–Norm estimates can be constructed uniformly
on [0, T ] depending on the data, T and ε.
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