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Abstract: The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can
be described by the nonlinear Navier-Stokes equations (N). This description corresponds to the so-called Eulerian
approach. We develop a new approximation method for (N) in both the stationary and the nonstationary case by
a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by
the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate
solutions with a high degree of regularity, which contains a convergent subsequence with limit function v such that

v is a weak solution on (N).
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1 Introduction

For the description of fluid flow there are in
principle two approaches, the Eulerian ap-
proach and the Lagrangian approach. The
first one describes the flow by its velocity
vo= (vl(t7$)7 U?(tvx)v 1)3(t,$)) = ’U(t, SC) at
time ¢ in every point x = (x1, x9,xz3) of the domain
G containing the fluid. The second one uses the trajec-
tory @ = (x1(t), 22(t), x3(t)) = 2(t) = X (¢,0,z9)
of a single particle of fluid, which at initial time
t = 0 is located at some point xy € G. The second
approach is of great importance for the numerical
analysis and computation of fluid flow also involving
different media with interfaces [2, 3, 5, 8], while the
first one has also often been used in connection with
theoretical questions [4, 6, 7, 9].

It is the aim of the present note to develop a
new approximation method for the nonlinear Navier-
Stokes equations by coupling both the Lagrangian and
the Eulerian approach. The method avoids fixpoint
considerations and leads to a sequence of approximate
systems, whose solution is unique and has a high
degree of regularity, important at least for numerical
purposes. Moreover, we can show that our method
allows the construction of global weak solutions of
the Navier-Stokes equations (compare [2, 4] for a
local theory): The sequence of approximate solutions
has at least one accumulation point satisfying the
Navier-Stokes equations in a weak sense [6].

2 The Stationary Navier - Stokes
Equations

We consider the stationary motion of a viscous incom-
pressible fluid in a bounded domain G C R? with a
sufficiently smooth boundary S. Because for steady
flow the streamlines and the trajectories of the fluid
particles coincide, both approaches mentioned above
are correlated by the autonomous system of character-
istic ordinary differential equations

2'(t) = v(z(t)), z(0) = 20 € G, (1)
which is an initial value problem for

t— x(t) = X(t,0,20) = X(t, z0)
if the velocity field z — v(z) is known in G.

To determine the velocity, in the present case
we have to solve the steady-state nonlinear equations

—vAv +v-Vo+ Vp=F in G,

2)
divve =0 in G, v=0 on S
of Navier-Stokes. Here x — p(z) is an unknown
kinematic pressure function. The constant v > 0
(kinematic viscosity) and the external force density
F" are given data. The incompressibility of the fluid is
expressed by divv = 0, and on the boundary S we
require the no-slip condition v = 0.
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3 The Lagrangian Approach

Let us start recalling some facts, which concern ex-
istence and uniqueness for the solution of the initial
value problem (1): If the function v belongs to the

lip /7~ . . .
space C"(G) of vector fields being Lipschitz con-

tinuous in the closure G = G U S and vanishing on
the boundary S, then for all ¢ € G the solution

t — x(t) = X(t, x0)

is uniquely determined and exists for all ¢ € R (be-
cause v = 0 on the boundary S, the trajectories re-
main in G for all times). Due to the uniqueness, the
set of mappings

R={X(t,): G— G|teR}

defines a commutative group of C'— diffeomor-
phisms on G. In particular, for ¢ € R the inverse
mapping X (¢,-)~! of X(t,-) is given by X(—t,-),
ie.
X(t7 ) ° X(_t7 ) = X(tv X(—t, ))

X(t—t,)=X(0,-) =id,
or, equivalently,

X(t, X(—t,x) ==z
for all x € G. Moreover we obtain detVX (¢, x) = 1
if
v € CRE(G) = {u € CyP(G)| divu = 0},
in addition. This important measure preserving prop-
erty implies
<f7 g> = <fOX(ta)> gOX(t7)>

for all functions f,g € L*(G), where (-, -) denotes
the scalar product in L?(G).

4 The Eulerian Approach

Next let us consider the Navier-Stokes boundary value
problem (2). It is well known that, given F € L%(G),
there is at least one function v satisfying (2) in some
weak sense [6]. To define such a weak solution we
need the space V(G), being the closure of C§5, (G)
(smooth divergence free vector functions with com-
pact support in G) with respect to the Dirichlet-norm

IVul| = v/(Vu, Vu), where we define

3
(Vu, VU> = Z (Djuz-, Dj’l)i>.

1,j=1

Let us recall the following

Definition 1 Ler F' € L?(G) be given. A function
v € V(G) satisfying for all ® € C§%,(G) the identity

v(Vu, V&) — (v-V®,v) = (F, ) (3)

is called a weak solution of the Navier-Stokes equa-
tions (2), and (3) is called the weak form of (2).

For a suitable approximation of the nonlinear term
let us keep in mind its physical deduction. It is a
convective term arising from the total or substantial
derivative of the velocity vector v. Thus it seems to
be reasonable to use a total difference quotient for its
approximation.

To do so, let v € Célﬁ(é) be given. Then for
any ¢ € R the mapping X(e,:) : G — G and
its inverse X (—¢,-) are well defined. Consider for
some u € C1(G) (C™(G) is the space of continuous
functions having continuous partial derivatives up to
and including order m € N in G) and = € G the
one-sided Lagrangian difference quotients

LS u(x) =
Lf u(z) =
and the central Lagrangian difference quotient

Lfu(x) = (Li_ u(x) + LS U($)) 4)

N | =

Since for sufficiently regular functions
L u(x) — v(z) - Vu(z)

and
LS u(x) — v(zx) - Vu(x)

as € — 0, the above quotients can all be used for the
approximation of the convective term v - Vv. There
is, however, an important advantage of the central
quotient (4) with respect to the conservation of the
energy:

Let v € Célﬁ(G) and u, w € L*(Q). Let X(e,")
and X(—e,-) denote the mappings constructed
from the solution of (1). Then, using the measure
preserving property from above, we obtain only for
the central quotient the orthogonality relation

(LFu, u) = 0. (5)
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S The Stationary Approximate
System

To establish an approximation procedure we assume
that some approximate velocity field v™ has been
found. To construct v+ we proceed as follows:

1) Construct X" X(%,) and its inverse
X" = X(—2,.) from the initial value prob-
lem

2(0) = 29 € G. (6)

2) Construct vt and p"*! from the boundary
value problem

n

51

—vAv"T 4 5 "o X — ™o X

+Vp"t' = F in G,
div "™ =0 in G,
" =0 on

Concerning the existence and uniqueness for the solu-
tion of (6) and (7) we need the usual Sobolev Hilbert
spaces H™(G), m € N, which denote the closure of
C™(G) with respect to the norm || - ||z (see [1]). A
main result is now stated in the following

Theorem 2 a) Assume v" € H*(G) N V(G) and

F € HYG). Then for all xo € G the initial value

problem (6) is uniquely solvable, and the mappings
X": G- @G, X" G—-G

are measure preserving C'— diffeomorphisms in G.

Moreover, there is a uniquely determined solution

v e H3(G)nV(G), Vp't e HY(G)

of the equations (7).
The velocity field v™ ' satisfies the energy equation
v||Vor 2 = (F, o™ *).

b) Assume v° € H3(G) NV (G) and F € HY(G).
Let (v™) denote the sequence of solutions constructed
in view of Part a). Then (v™) is bounded in V (G) i.e.
|Vo™||? < Cg.F, forall n € N, where the constant
Cq.F, does not depend on n. Moreover, (v") has
an accumulation point v € V(QG) satisfying (3), i.e.
v is a weak solution of the Navier-Stokes equations

(2).

S. (7

6 The Nonstationary Navier - Stokes
Equations

Let us consider now the motion of a nonstationary
viscous incompressible fluid flow in a bounded
domain G C R? with a sufficiently smooth boundary
S. Without loss of generality, in this section we
assume conservative external forces and consider
the following Navier-Stokes initial boundary value
problem:

Construct a velocity field v = v(¢,z) und some
pressure function p = p(¢,x) as a solution of the
system

nw—vAv+Vp+ov-Vvo = 0

V.u = 0 in G, t>0,
v = 0 onS, t>0,

v = vy for t=0.
()

Here wvg is a suitable prescribed initial velocity
distribution.

The existence of a classical solution global in
time of this problem without any smallness restriction
on the data has not been proved up to now. Hence
also a globally stable approximation scheme does
not exist for this system. In order to construct
classically solvable equations, as in the steady-state
case, an approximation of the nonlinear convective
term v - Vv, which is responsable for the non-global
existence of the solution, by means of a Lagrangian
difference quotients seems to be reasonable.

In the following we show that the nonstationary
Navier-Stokes system (V) can also be approximated
by means of Lagrangian differences. The resulting ap-
proximate system (/V.) is uniquely solvable, its solu-
tion exists globally in time, has a high degree of regu-
larity and satisfies the nonstationary energy equation.

7 The Initial Value Problem

Let J be a compact time interval, and let v €
C(J,H3(G) N V(@)) be a given velocity field being
strongly H3- continuous. Consider the initial value
problem

a(t) = ot x(t))

x(s) = 2 5 (5,1’0) €Jx é (A)

concerning the trajectory z(t) = X (¢, s, zo) of a fluid
particle, which at time ¢t = s is located at xg in G.



Due to well-known results on ordinary differen-
tial equations, as in the autonomous case, the uniquely
determined general solution X (¢, s, z¢) of (A) exists
for all times, and the mapping

X(t,s,):G— G, t,seJ
is a measure preserving diffeomorphism with inverse

function
X1 =X(s,t,-).

As in the stationary case we now approximate the time
dependent nonlinear convective term v (¢, x)- Vo(t, x)
by a central Lagrangian difference quotient as follows:

v(t,x) - Vo(tg, z) ~

~ 2% (U(to,X(t +e,t,w)) —oto, X (¢, + 5’””)))'

(®)
Here ~ means that for a sufficiently regular function
v the right hand side converges to the expression on
the left hand side as ¢ — 0.

The main advantage of the central quotient in
(8), which we denote by

1
% (voX —voX1

for abbreviation, is again the validity of an analogon
to the orthogonality relation of Hopf [6]:

Using (-,-) as L?(G)-scalar product Hopf ob-
tains the global (in time) existence of weak solutions
to the Navier-Stokes system (V) due to the important
orthogonality relation

(v-Vov,v) =0, v e V(G).

Using the measure preserving property of the mapping
X, we analogously obtain

1
Z(UOX—UOXil,U) =
1
= 5 ((UOX,'U)—(U,UOX)) =0,

which implies the validity of the energy equation for
all sufficiently regular solutions of the approximate
system, if central Lagrangian differences instead of
one-sided quotients are used.

8 Time Delay and Compatibility at
Initial Time

To avoid fixed-point considerations for the solution
of the regularized approximate system — the velocity
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vector v as well as the mappings X are unknown
— by means of a time delay we replace v - Vv by
+ (vo X —vo X ~1) with trajectories X constructed
at earlier time points, where the velocity v is known

already.

To do so, on the given time interval [0,7] we
define a time grid by

tr=k-e,k=0,...,NeN,
where € := % > 0. Setting
Xpi= X(tg, tp—1,2),

fort € [tg,tr+1) We can use e.g. the approximation
1
v(t, @) Vo(t,z) ~ o (v(t, Xp) = v(t, X;7)- )

To initiate this procedure we extend the initial value
vg continuously to a start function

vs € C([-¢,0], H3(G) N V(G)).

Then, indeed, on the subintervals [tx,tx+1) wWe can
successively construct the mappings X from the
given velocity field v and vice versa. Nevertheless, we
do not obtain a global on [0, T'] existing solution of a
problem regularized by (9). This is due to a certain
compatibility condition, which always occurs in par-
abolic problems at the corner of the space time cylin-
der:

For the unique construction of the mapping Xy, if in-
teger order Sobolev spaces are used, we need a veloc-
ity field

v E C([tk,htk],H?)(G) NV(G)),
- v € C([tp—1,t), V(G)).
Using

P:IXG) — H(G) = Co (@)

as orthogonal projection we obtain in particular the
condition

vi(ty) = pPAv(ty)— (10)
— 5P (0t X0) = ol X)) € V(O).

Due to vy € H3(G) N V(G) we find that the right
hand side of (10) is contained in H'(G)N H(G), only.
Hence the condition v;(t;) € V(G) implies in case
of an approximation of the type (9) that we have to
impose the condition

uPAv(ty)— (11)
1
—2—€P((v(tk,Xk) —v(tk,Xk_l)> —0 on S.
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9 The Approximate System (/V.)

Instead of a system regularized by (9) we consider

vy — pAv + Vp + Z.v 0 in G for t>0,
Vv = 0
v = 0 on S,
v = f in G for t=0,
(Ne)

where f € V(G), and where for ¢ € [ty, 1]

Zeo(t, ) = o (6 = )0l X0) — olt, X )+

(ths1 — 0)(0(t, Xi 1) — o(t, X))
is continuously defined on [0, T].
In this case all compatibility conditions are sat-
isfied: The condition for ¢ = 0 can be fulfilled
following a hint of V. A. Solonnikov by prescribing
v(0) = f € V(G) instead of v(0) = vg:
For a given function

vs € C(|=2¢, —¢], H¥(G) NV (G))

we solve the problem (A) and obtain the mapping
X_1. Then we consider the stationary problem

1
vPAvy — ?P(’UO oX_1—1g OX:11) = f,
9

and obtain by well-known existence and regularity re-
sults a uniquely determined solution

vg € H3(G)NV(G),

which, since functions in V' (G) vanish on the bound-
ary S, satisfies the required compatibility condition
(11). By linear interpolation between vs(—¢) and vy
we then obtain a start function

vs € C([~2¢,0], H*(G) NV (Q)).
Since the compatibility condition in all the following

grid points ¢; are automatically satisfied due to the
continuity of the function

t — Z.vu(t),
we finally obtain, by successively constructing the

mappings fom the velocity field v and vice versa, the
following result:

Theorem 3 Ler [0,T] be given and let f € V(G)
Then for every € > 0 exists a uniquely determined
function

v e C(0,T], H*(G)nV(G))
und a uniquely determined pressure gradient
Vp € C([0,T), H'(G))

as the solution of the system (N;). For v holds on
[0, T'] the energy equation

t
\U(t)!!2+2V/Hv(S)H2d8 = Jlwoll?,
0

and H3—Norm estimates can be constructed uniformly
on [0, T] depending on the data, T and e.
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