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Abstract: - Accurate real-time reservoir inflow forecasting is an important requirement for operation, 

scheduling and planning conjunctive use in any basin. In this study, Time Delay Artificial Neural Network 

(TDANN) models, which are time lagged feed-formatted networks with delayed memory processing 

elements at the input layer, are applied to forecast the daily inflow into a planned Reservoir (Almopeos 

River basin) in Northern Greece. The network topology is using multiple inputs, which include the one 

time lagged daily reservoir inflow values and the time lagged daily precipitation values from three 

meteorological stations which are inside the Almopeos river basin and a single output, which are the daily 

reservoir inflow values. The choice of the precipitation input variables introduced to the input layer was 

based on the cross-correlation. In the forecasting part of this study, predictions of one day ahead were 

investigated. The training of ANNs suitable for the current application is the cascade correlation algorithm. 

Kalman’s learning rule was used to modify the artificial neural network weights. The networks are 

designed by putting weights between neurons, by using the hyperbolic-tangent function for training. The 

results show a good performance of the TDANN approach and demonstrate its adequacy and potential for 

forecasting daily reservoir inflow. 
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1 Introduction 
Forecasting the reservoir inflow is an important 

requirement for planning conjunctive use in any 

basin. The purpose of forecasting is to reduce the 

risk in decision making. Information regarding 

reservoir inflow, is necessary in the analysis and 

design of several water resources projects such as 

dam construction, reservoir operation, flood 

control and wastewater disposal. There are 

different types of inflow forecasting models, and 

they can be classified into three types: empirical 

(or black box) models, lumped conceptual models 

and distributed physically based models. Black 

box models may also be divided into sub groups 

according to their origin, namely empirical 

hydrological methods (such as unit hydrograph 

model), statistically based models (such as 

ARMA, ARMAX, SARIMA [25], gauge to 

gauge correlation models etc.) and artificial 

intelligence based models (such as artificial 

neural networks). 

In recent years, ANN models have become 

extremely popular for prediction and forecasting 

in a number of areas, including finance, power 

generation, medicine, water resources and 

environmental science [22]. A number of 

researchers have investigated the adaptability of 

ANN models to the field of hydrology, water 

resources and hydrologic time series [1, 2, 4, 10, 

12, 16, 17, 18, 19, 20, 21, 23, 28, 29, 30, 31, 33, 

34]. 

In this paper, three layer cascade correlation 

Time Delay Artificial Neural Network (TDANN) 

models were developed to forecast the one day 

ahead daily inflow into a planned Reservoir 

(Almopeos River basin) in Northern Greece by 

using multiple inputs. These inputs include the 

one time lagged daily reservoir inflow values and 

the time lagged daily precipitation values from 

three meteorological stations which are inside the 

Almopeos river basin. 

 

2 Artificial neural networks 

methodology 
Artificial Neural Network is an information 

processing system that tries to replicate the 

behavior of a human brain by emulating the 

operations and connectivity of biological 

neurons [9]. The basic structure of an ANN 

model, usually, consists of three distinctive 
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layers, the input layer, where the data are 

introduced to the ANN, the hidden layer or 

layers, where data are processed, and the output 

layer, where the results of ANN are produced. 

The structure and operation of ANNs is discussed 

by a number of authors [6, 7, 9, 14, 15, 27]. 

The ANNs are designed by putting 

weights between neurons, by using a transfer 

function that controls the generation of the 

output in a neuron, and using adjustable laws 

that define the relative importance of weights 

for input to a neuron. In the training, the ANN 

defines the importance of the weights and 

adjusts them through an iterative procedure. 

The training of ANNs suitable for the current 

application is the cascade correlation algorithm 

[6,8], which produces the cascade correlation 

Time Delay Artificial Neural Network (TDANN) 

that belongs to the feedforward type, which is a 

supervised algorithm in the multilayer feed-

forward ANNs. The Cascade part refers to the 

architecture and its mode of construction entails 

adding hidden units once at a time and always 

connecting all the previous units to the current 

unit. The Correlation part refers to the way 

hidden units were trained by trying to maximize 

the correlation between output of the hidden unit 

and the desired output of the network across the 

training data. The training procedure of TDANNs 

is composed of a forward pass. The information 

is processed in the forward direction from the 

input layer to the hidden layer or layers to the 

output layer. Kalman’s learning rule [3, 5, 13, 

24] was used to modify the TDANN weights. 

Such, a network has the ability to approximate 

any continuous function. As it was mentioned the 

input nodes receive the data values and pass them 

on to the hidden layer nodes. Each one of them 

collects the input from all inputs nodes after 

multiplying each input value by a weight, 

attaches a bias to this sum and passes on the 

result through a nonlinear transformation, the 

hyperbolic-tangent function [9]. 

The objective of the training algorithm 

needed by the network for training, is to reduce 

the global error [12] by adjusting the weights 

and biases. In each training step, a new hidden 

neuron is added and its weights are adjusted to 

maximize the magnitude of the correlation. Each 

hidden neuron is trained just once and then its 

weights are frozen. 

The error between the output of the TDANN 

and the target value of the output was computed, 

as well. In order to achieve an estimation of 

the one day ahead daily reservoir inflow, the 

one day lagged daily reservoir inflow values and 

the time lagged daily precipitation values from 

three meteorological stations, which are inside 

the Almopeos river basin, are introduced as 

inputs into TDANNs. In this sense, the input 

layer of TDANNs consists of a number input 

neurons and one output neuron, which is the 

daily reservoir inflow. 

The choice of the precipitation input 

variables introduced to the input layer based on 

the cross-correlation. The use of cross-correlation 

between the ith input series and the output 

provides a short cut to the problem of the delayed 

memory determination [26]. The cross-

correlation coefficient of the ith input series and 

the output records on a span of N times intervals 

has been given by Yevjevich [32]. As the output 

increases after the occurrence of the ith input 

series and then decreases gradually towards to its 

original level, the cross-correlation coefficient is 

expected to decrease gradually with increase of 

the time lag, k. The first minimum positive value 

of the correlogram approximately indicates the 

delayed memory. Therefore, personal judgement 

must be exercised in interpreting the correlogram. 

During the training of TDANNs in the 

calibration period, the simulated daily reservoir 

inflow values are compared with the 

corresponding observed daily inflow values to 

identify the simulation errors. The geometry of 

TDANNs, which determines the number of 

connection weights and how these are arranged, 

depends on the number of hidden layers and the 

number of the hidden nodes in these layers. In the 

developed TDANNs, one hidden layer is used 

and the number of the hidden nodes is optimized 

by maximizing the correlation between output of 

the hidden unit and the desired output of the 

network across the training data. However, the 

final network architecture and geometry are 

tested to avoid over-fitting as suggested by Maier 

and Dandy [21]. 

 

3 Application and results 
The study area is the Almopeos river basin, 

Northern Greece (Fig. 1), between 40
o
49΄ S to 

41
o
09΄ N and 21

o
47΄ W to 22

o
19΄ E. The basin is 

1021 km
2
 in size. In this paper, TDANN models 

were developed to forecast the daily inflow into a 

planned Reservoir (Almopeos river basin) by 

using multiple inputs, which include the one day 

lagged daily reservoir inflow values and the time 

lagged daily precipitation values from three 
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meteorological stations (Exaplatanos, Promachoi 

and Theodoraki) (Fig. 1), which are inside the 

Almopeos river basin and a single output, which 

are the daily reservoir inflow values [11]. Thus, 

there are four separate independent input 

functions of time and a single output function of 

time. 

 

 
Fig. 1. Map showing the Almopeos river basin, 

the reservoir and the meteorological stations 

 

The TDANN models were developed by 

using the daily data from the year 1987 as the 

calibration period and from the year 1995 as the 

validation period. Related information for the 

reservoir inflow and the three precipitation 

stations (Fig. 1) and statistical parameters of their 

time series of daily values for the years 1987 and 

1995, are given in Table 1. 

For TDANN models construction, daily 

inflow data from the year 1987 randomly 

partitioned into training (90% of all data) and test 

(the remaining 10% of all data) data sets, were 

used. The one day lagged daily reservoir inflow 

values and the time lagged daily precipitation 

values from the three meteorological stations, 

were used as inputs. The delayed memory 

corresponding to the ith input series was 

determined by using the cross-correlation 

between the ith input series and the output. This 

procedure was applied to the Almopeos river 

system (Fig. 1), using the correlograms, between 

the daily reservoir inflow values and the daily 

precipitation values from the three precipitation 

stations (Exaplatanos, Promachoi and 

Theodoraki) during the calibration year. The 

results indicate that the delayed memory of the 

system corresponding to the ith input series 

appears to be equal to 10 days. 

Numerous TDANN structures tested in order 

to determine the optimum number of hidden 

layers and the number of nodes in each. The 

architecture of the best TDANN model for 

forecasting reservoir inflow is composed of one 

input layer with thirty one input variables, one 

hidden layer with eight nodes and one output 

layer with one output variable. The input QR(t-1) 

represents the one day lagged daily reservoir 

inflow value and the inputs PEt, PE(t-1), PE(t-2), … 

PE(t-9), PPt, PP(t-1), PP(t-2), … PP(t-9), and PTt, PT(t-1), PT(t-

2), … PT(t-9) represent the delayed daily 

precipitation values recorded at Exaplatanos, 

Promachoi and Theodoraki, respectively. The 

output QR represents the one day ahead 

forecasted daily reservoir inflows. 

 

Table 1. Related information for the Almopeos 

reservoir inflow and the three precipitation 

stations and statistical parameters of their time 

series of daily values for the calibration year 

1987 and the validation year 1995 

Almopeos reservoir inflow 

Year Mean 

(m
3
/s) 

Min 

(m
3
/s) 

Max 

(m
3
/s) 

st dv 

(m
3
/s) 

Calibration (1987) 12.03 2.25 152.28 14.83 

Validation (1995) 6.06 3.21 45.94 4.48 

Exaplatanos meteorological station (132.9m a.s.l.) 

Year Sum (mm/year) Max (mm/day) 

Calibration (1987) 815 110 

Validation (1995) 585 35 

Promachoi meteorological station (260 m a.s.l.) 

Year Sum (mm/year) Max (mm/day) 

Calibration (1987) 954 125 

Validation (1995) 789 90 

Theodoraki meteorological station (424 m a.s.l.) 

Year Sum (mm/year) Max (mm/day) 

Calibration (1987) 877 54 

Validation (1995) 745 42 

 

The best TDANN model, the correlation 

coefficient (R), the mean absolute error (MAE), 

the root mean square error (RMSE), the RMSE 

(%) of the mean, between the output of the 

hidden unit and the desired output of the TDANN 

model, for the Almopeos reservoir daily inflow, 

for the calibration, the training, the test and the 

validation data sets, are given in Table 2. The 

notation  (QR / TDANN: 31-8-1/0.9957) (Table 2) 

means that the best architecture of the specific 

TDANN model is composed of one input layer 

with thirty one input variables, one hidden layer 

with eight nodes and one output layer with one 

output variable, with value of correlation 

coefficient equals to 0.9957. 
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Table 2. TDANN model, Correlation coefficient 

(R), Mean absolute error (MAE), Root mean 

square error (RMSE) and the (%) of the mean of 

the TDANN model, for the daily inflow values 

into Almopeos reservoirfor the calibration, the 

training, the test and the validation data sets 

QR  / TDANN: 31-8-1/0.9957 

Data R MAE RMSE 

Calibration 

(365) (1987) 

0.9957 0.7156 1.4984 

(12.45%) 

Train (328) 0.9958 0.6717 1.5087 

(12.51%) 

Test (37) 0.9946 1.1046 1.4035 

(11.89%) 

Validation 

(365) (1995) 

0.9688 1.1478 1.1478 

(18.95%) 

 

According to the results of Table 2 we can 

see that the difference in the R, MAE and RMSE 

obtained using the test data set is not markedly 

different than that obtained using the training 

data, meaning there is no overfitting. Also, the 

results of Table 2 show a good performance of 

the chosen TDANN model for forecasting the 

Almopeos reservoir daily inflow.  

Table 3 depicts the percentage error in daily 

peak flow estimates for the TDANN model 

during the calibration and validation years. The 

low percentage error in daily peak flow estimates 

imply that the TDANN model is able to forecast 

the peak flows with reasonable accuracy. Also, 

the times to peak are well estimated. 

 

Table 3. Percentage error in daily peak estimation 

for the TDANN model during the calibration and 

validation years 

Calibration year 

Peak flow (m
3
/sec) 

Date 
Historical TDANN 

Error 

(%) 

15 Feb 87 152.28 140.72 -7.59 

21 Feb 87 64.43 61.18 -5.04 

23 Mar 87 133.65 122.92 -8.02 

31 Mar 87 81.29 72.02 -11.41 

27 Nov 87 78.56 76.73 -2.33 

Validation year 

26 Apr 95 34.74 37.31 7.40 

2 Dec 95 30.20 28.59 -5.33 

30 Dec 95 45.94 43.38 -5.57 

 

An analysis to assess the potential of the 

chosen TDANN model to preserve the statistical 

properties of the historic inflow series reveals that 

the inflow series forecasted by the TDANN 

model reproduces the first three statistical 

moments (i.e. mean, standard deviation and 

skewness) for the calibration and validation 

years.  

The comparisons were also made by using 

the paired t-test with the two-sided tabular value 

(a=0.05) and the 45–degree line test. The 

computed t-values and the slopes of the chosen 

TDANN model, for the Almopeos reservoir daily 

inflow values, for the calibration, the training, the 

test and the validation data sets, are given in 

Table 4. 

 

Table 4. t-value, two-sided tabular value (a=0.05) 

and slope of the TDANN model, for the daily 

inflow values into Almopeos reservoir, for the 

calibration, training, test and validation data sets 

QR  / TDANN: 31-8-1/0.9957 

Sample size t-value Two-sided 

tabular value 

(a=0.05) 

Slope 

(
o
) 

Calibration 

(365) (1987) 

0.7564 1.9665 45.98 

Train (328) 1.1721 1.9673 45.99 

Test (37) 1.2280 2.028 45.94 

Validation 

(365) (1995) 

1.0258 1.9665 44.24 

 

The computed t-values of the chosen 

TDANN model were less than two-sided tabular 

t-values, for the calibration, the training, the test 

and the validation data sets (Table 4). These 

imply that there were no significant differences 

between the observed and the forecasted values. 

Also, the observed values and the forecasted 

values yielded slopes close to 45 degrees, for the 

calibration, the training, the test and the 

validation data sets (Table 4). It can be observed 

that the TDANN model tended to make an angle 

of 45 degrees with the axes, meaning there is no 

significant difference between the observed and 

the forecasted values. Since the data in the test 

and validation data sets were never seen by the 

chosen TDANN model, the good predictions on 

these data sets (Tables 2, 3 and 4) demonstrated 

the adequacy and the potential of the chosen 

TDANN model for forecasting daily reservoir 

inflow. Tables 2, 3 and 4 clearly demonstrate the 

ability of the chosen TDANN model to forecast 

very well daily inflow values, into Almopeos 

reservoir. Consequently, the TDANN models 

seem promising to be applicable for forecasting 

daily reservoir inflow. 
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4  Conclusions 
In this paper, Time Delay Artificial Neural 

Network (TDANN) models were developed for 

forecasting daily inflow values into Almopeos 

river reservoir. The training of the TDANNs was 

achieved by the cascade correlation algorithm 

which is a feed-forward and supervised algorithm 

with dynamic expansion. Kalman’s learning rule 

was used to modify the artificial neural network 

weights. The networks are designed by putting 

weights between neurons, by using the 

hyperbolic-tangent function for training. The 

number of nodes in the hidden layer was 

determined based on the maximum value of the 

coefficient of correlation. In the training process, 

the test data were not used with no way neither 

using them as part of the training procedure or as 

part of the decision when to stop training. No 

fixed number of iterations used as the stopping 

criterion of the procedure. The choice of the input 

variables introduced to the input layer based on 

the cross-correlation. The use of cross-correlation 

between the ith input series and the output during 

the calibration period provides a short cut to the 

problem of the delayed memory determination. 

The results, for the training, the test, the 

calibration and the validation data sets clearly 

demonstrate the ability of the TDANN models for 

forecasting daily reservoir inflow. The TDANN 

models introduced in this study have the ability to 

forecast the peak reservoir inflows with 

reasonable accuracy, to develop a generalised 

solution as there is no overfitting and to 

overcome the problems in data of daily reservoir 

inflows such as outliers and noise in the data. 

Since the proposed methodology is based on the 

information contained in the data series itself, the 

Time Delay Artificial Neural Network approach 

becomes more explicit and can be adopted for 

any reservoir daily inflow forecasting. 
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