
Thermodynamical modeling of ferroelectric polycrystalline

material behavior

VOLKMAR MEHLING, CHARALAMPOS TSAKMAKIS, DIETMAR GROSS
Darmstadt University of Technology

Department of Civil Engineering
Hochschulstr. 1, 64289 Darmstadt

GERMANY
mehling@mechanik.tu-darmstadt.de

Abstract: A fully three-dimensional, thermodynamically consistent model for the behavior of polycrys-
talline ferroelectric ceramics, such as PZT or Barium Titanate is presented. In an internal variable
framework, the internal state of the material is described by two microscopically motivated internal state
variables. The first one is a second-order texture tensor, indicating the orientation of axes of the crys-
tal unit cells. The second is vector-valued and describes the macroscopic polarization state. Similar to
rate-independent plasticity theory for small deformations, strains and electric displacements are decom-
posed into reversible and irreversible parts. For the reversible part, a linear piezoelectric constitutive
law is assumed. For the irreversible part, driving forces and evolution laws are established. Saturation
and electro-mechanical coupling during irreversible processes are governed by energy barrier functions
introduced in the electric enthalpy function. The model parameters are fitted to experimental hysteresis
data. Illustrative examples demonstrate the models capabilities.
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1 Introduction

Piezoelectric materials exhibit electromechani-
cally coupled behavior. Due to the direct piezo-
electric effect, the polarization is altered by ap-
plied stresses, producing an electric signal. The
so-called inverse piezoelectric effect causes the de-
formation of the material in an electric field. Both
effects are used in various applications for sensor-
ing and actuation. For small applied stresses and
electric fields, the behavior of piezoelectrics is usu-
ally considered as reversible. Piezoelectric mate-
rials with the capability of repolarization under
high electrical or mechanical fields are called fer-
roelectrics. The group of ferroelectrics, this paper
is concerned with, exhibits the tetragonal phase of
the perovskite crystal structure. The best known
ferroelectrics are BaTiO3 (Barium Titanate) and
tetragonal PZT (Lead Zirconate Titanate). The
latter is most frequently used for industrial ap-
plication. The microscopic reason for repolariza-
tion is the switching from one state to another of
unit cells or of domains with uniform orientation
within the crystal . The domain switching process
is dissipative such that the macroscopic behavior
is hysteretic. For experimental results we refer
to [10, 3, 13, 4]. The number of publications ad-

dressing the simulation of uni-axial behavior of
ferroelectric materials is considerable. The de-
velopment of reliable three-dimensional models is
still subject to intensive research. For an overview
of the literature the reader is referred to the re-
view articles by Kamlah [6] and Landis [9]. The
basic features of the model discussed in this paper
have been presented in [11]. The current paper is
intended to present the state of current research.
The model partly relies upon previous works by
Kamlah&Jiang [7] and Landis [8]. Analogous
to the former, a set of internal state variables is
chosen, which is motivated by microscopical con-
siderations. Thermodynamical considerations are
used to derive driving forces for the internal vari-
ables. Similarly to the proceeding in incremen-
tal plasticity theory, a loading function is used to
divide reversible (piezoelectric) from irreversible
(ferroelectric) processes. For the former, a lin-
ear piezoelectric relation is assumed, applying an
invariant formulation cf. [12] including history
dependent development of anisotropy for the me-
chanical, the electrical as well as for the piezoelec-
tric coupling properties. For the latter, normality
rules are used to determine the rates of change of
internal state variables. Energy barrier functions
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are used to model the saturation of irreversible
strain and polarization, the saturation states be-
ing defined by the boundaries of the admissible
range of the internal state variables.

2 Notation

When index notation is applied, it refers to a
cartesian frame of reference and the indices are de-
noted by small, slanted letters. Use is made of the
summation convention. Scalars are denoted by
slanted letters (H,α,...), vectors are marked by ar-

rows (~P, ~n,...), while second, third and fourth or-
der tensors are represented by bold face (A,σ,...),
small double- stroke (dl, e,...) and capital double-
stroke letters (C,P,...), respectively. The rules

~a·~b=aibi, tr (A)=Akk, (a·~b)ij =aijkbk, (a :B)k =

akijBij , (A·B)ij =AikBkj , (AT)ij =Aji, A :B=

tr(A·BT), (aT)ijk = akij and (C:A)ij = CijklAkl

hold, while |~a|=
√
~a·~a is the Euclidean norm of

the vector ~a and devA is the deviator of A. We
denote by ~a⊗~b the tensorial product of two vectors

~a and ~b. Thus, e.g. ~a⊗B represents a third-order
tensor. Let A be a function of B. For the partial
derivative with respect to B, we write ∂BA, while
˙(·) is the material time derivative of (·). The di-

vergence and gradient operators are div (·) and
grad (·).

3 Model Summary

3.1 Thermodynamical Considerations

We start from the balance equations for mass, lin-
ear and angular momentum, energy, entropy, elec-
tric charge and magnetic flux. Neglecting electric
body forces and couples [6], as well as mechan-
ical body forces, the balance equations of linear
and angular momentum reduce to divσ = 0 ,
where σ is the symmetric Cauchy stress ten-
sor. We restrict ourselves to quasi-electrostatic
processes and assume perfectly insulating prop-
erties. Then, in the absence of external charges,

the Maxwell-relations reduce to div ~D=0, and
there exists an electric potential function ϕ, such

that ~E=− gradϕ . Here, ~D and ~E denote the elec-
tric displacement and the electric field strength,
respectively. The above field equations are sup-
plemented by the Neumann-boundary conditions

σ · ~n = ~t and ~D · ~n = qf on surfaces with
prescribed tractions ~t or prescribed free charge
densities qf and with surface normals ~n, and by
the Dirichlet-conditions for surfaces with pre-
scribed displacements ~u or electric potentials ϕ.

Assuming, that the entropy flux and source terms
are linked to the heat flux and radiation by the ab-
solute temperature, and demanding the entropy
production to be positive for all processes, one
arrives at the Clausius-Duhem inequality

̺ψ̇+̺θ̇s−ε̇·σ−̺pe+
1

θ
~q· grad θ = −̺πs ≤ 0, (1)

where ψ is the Helmholtz free energy, ̺ denotes
the mass density, θ and s are the absolute tem-
perature and the entropy, respectively. ε̇ and σ

denote the strain rate and Cauchy stress, pe is
the electrical power, ~q is the heat flux vector and
πs is the entropy production. Now, the following
assumptions are made:
◦ We consider isothermal processes with small de-

formations and uniform distribution of temper-
ature.

◦ The material properties are assumed as time-
independent.

◦ The electric enthalpy H, which is introduced by
a Legendre transform

̺Ḣ = ̺ψ̇ − ~̇E · ~D − ~E · ~̇D, (2)

is a function of the electric Field ~E, the strain ε

and a set of internal state variables q. Further-
more it is assumed to be additively decompos-
able into two parts, Hr and H i, where H i only
depends on q

H = H̄(ε, ~E,q) = Hr +H i (3)

Hr = H̄r(ε, ~E,q) , H i = H̄ i(q) . (4)

With this, equation (1) can be rewritten in terms
of H as

(

σ − ̺∂εH̄
)

: ε̇ −
(

~D + ̺∂~E
H̄

)

· ~̇E

−
∑

j

̺∂qjH̄q̇j ≥ 0 . (5)

Applying standard arguments of thermodynam-
ics, it follows, that

σ = ̺∂εH̄
r and ~D = −̺∂~E

H̄r , (6)

together with the dissipation inequality

Ḋ :=
∑

j

(−̺∂qjH̄)q̇j ≥ 0 (7)

are sufficient conditions for the validity of the sec-
ond law of thermodynamics in the form of the
Clausius–Duhem inequality for every admissi-
ble process.
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3.2 Internal State Variables

The following additive decompositions into re-
versible and irreversible parts of the strain tensor

ε and the electric displacement ~D are assumed to
apply (cf. e.g. [2]):

ε = ε
r + ε

i , ~D = ~Dr + ~Pi . (8)

Here it is assumed, that ε
i and ~Pi are functions

of q (cf. [7]):

ε
i = ε̂

i(qj), ~Pi = ~̂Pi(qj) . (9)

For the polycrystalline ferroelectrics with tetrag-
onal crystal structure considered here, the crystal
unit cells can be characterized by the orientation
of their longer crystal axis, in the following re-
ferred to as ’c-axis’ and by the direction of the
spontaneous polarization of that cell. Note, that
a cell with a given c-axis may be polarized only
parallel to this axis. In particular, with~c denoting
the direction of the c-axis, the polarization can be
±Ps~c, where the material constant Ps is the mag-
nitude of spontaneous polarization. We define the
orientation distribution function (ODF)

f =
3

4π
~c · A ·~c , (10)

where A is referred to as the texture tensor of
the distribution and denotes a symmetric, positive
semi-definite second-order tensor, with tr (A) =
1. Function f can be interpreted as a surface-
density function on the unit sphere. Then, inte-
gration over all directions ~c yields

∫∫

f dA = 1.
The irreversible strain state of a unit cell is

directly connected to the direction of its c-axis.
In [11], volume averaging over all unit cells is used
to derive the macroscopic irreversible strain

ε
i =

3

2
ε0

(

A − 1

3
1

)

. (11)

The texture tensor A serves as an internal state
variable, that describes the irreversible strain
state. An irreversible strain state is considered
as saturated, if one or two eigenvalues of A equal
zero. For the representation of the macroscopic
remanent polarization, a vector-valued state vari-
able ~p is chosen, such that

~Pi = P0~p . (12)

ε0 and P0 are the saturation values of uniaxial
strain and polarization of the polycrystal. The

extent to which the material can be polarized de-
pends on the orientation of c-axes. It has been
shown in [11], that the texture-dependent limit
states (saturation states) of polarization in a given
direction ~n, |~n| = 1 can be expressed by the po-
larizability function

~Pi
sat = P0

(

A · ~n +
1

2
(1 − ~n · A · ~n)~n

)

. (13)

This function is comparable to the ’distance vari-
able’ applied in [8]. For simplicity, (13) is approx-
imated by an ellipsoidal form

~Pi ⋆
sat =

1

2
P0 (1 + A) · ~n , |~n| = 1 . (14)

The admissible range for ~p can be written as

{

~p |2(1 + A)−1 · ~p| ≤ 1
}

, (15)

and the distance of the relative polarization from
the saturation surface can be described by the
variable

η = 2|(1 + A)−1 · ~p| . (16)

It is zero for vanishing polarization and equal to
one in case of polarization saturation.

3.3 Constitutive Law

When leaving the switching processes out of con-
sideration, the behavior of ferroelectrics is purely
piezoelectric. It is common, to assume the piezo-
electric relation between the mechanical and elec-
trical state variables to be linear (e.g. [5]). In
our case the piezoelectric part of the electric en-
thalpy function is formulated by application of an
invariant scheme. It can be written in the follow-
ing quadratic form

̺Hr = ̺H̄r(ε̂r(ε,A), ~E, ~p) (17)

=
1

2
ε

r:CE(~p):εr − ε
r:e(~p)·~E − 1

2
~E·ǫε(~p)·~E − ~Pi·~E ,

with the tensors of elastic, piezoelectric and di-
electric moduli C

E, e and ǫ
ε, respectively, being

functions of the polarization state of the poly-
crystal. In this sense, the piezoelectric relation
is assumed to be transversely isotropic, with the
axis of anisotropy aligned with the vector of irre-
versible macroscopic polarization. For vanishing
macroscopic polarization (i.e. |~p| = ~0) all moduli
become isotropic and piezoelectric coupling dis-
appears. This seems reasonable for the thermally
depolarized state of the polycrystal.
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Similarly to [7] and [8] the part of the electric
enthalpy function, which is concerned with irre-
versible processes is composed of quadratic func-
tions, and singular terms, which tend to infinity
as internal variables approach saturation states:

̺H i = ̺Ĥ i(A, ~p) (18)

=
1

2
cAtr dev (A)2 +

1

2
cp~p · ~p

+
aA

mA

tr (A−mA) +
ap

mp
(1 − η)−mp. (19)

The third term on the right hand side of (18) rep-
resents an energy barrier function, which accounts
for strain saturation. It grows to infinity as any
eigenvalue of the texture tensor approaches zero.
Analogously, the last term tends to infinity as the
gap between the current amount of polarization
and the polarizability vanishes. cA, aA, cp, ap, mA

and mp are material parameters.
Using the above definitions, we can identify

the terms in the brackets of equation (7) as driv-

ing forces fA and ~fp for the internal variables A

and ~p.

fA = −̺∂AĤ i ,
~fp = −̺∂~pĤ

r − ̺∂~pĤ
i.

(20)

Well motivated by the experimental observa-
tion, namely that irreversible processes only oc-
cur in case of loading beyond certain limits, a so-
called switching function is introduced to distin-
guish reversible from irreversible processes. It is
completely analogous to yield functions in plastic-
ity theory. In particular, the following switching
function is used in the examples below,

F =
dev (fA)

fA
c

:
dev (fA)

fA
c

+
dev (fA)

fA
c

:(~p⊗
~fp

f
p
c

)sym

+
|~fp|2
(fp

c )2
− 1 ,

(21)
where fA

c =
√

1.5ε0σc and f
p
c = P0Ec represent

critical driving forces in uniaxial experiments. In
these equations, Ec and σc are the coercive elec-
tric field and the coercive stress, respectively. The
postulation of maximum electro-mechanical dis-
sipation during switching processes leads to the
normality rules for the evolution of the internal
state variables

Ȧ = λ̇∂fAF , ~̇p = λ̇∂~fpF . (22)

The factor λ̇ is determined from the so-called con-
sistency condition Ḟ = 0.
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Figure 1: Experimentally observed (dashed lines)
and simulated (solid lines) D-E (left) and ε-E
(right) hysteresis loops.

4 Numerical Simulations

The model has been implemented in a finite el-
ement code to facilitate the simulation of com-
plex non-homogeneous setups. The calcula-
tions have been carried out using the MatLab

based open-source finite element code DAEdalon
(www.daedalon.org), employing three dis-
placement components and the electric potential
as nodal degrees of freedom. Time-integration of
the rate-equations is carried out by the backward-
Euler scheme together with the predictor-
corrector method known from computational
plasticity.

The parameters of the model have been
roughly fitted to experimental hysteresis data
from uniaxial electric cycling [1]. The measured
and simulated hysteresis loops are depicted in
Fig.1. The agreement of both sets of graphs is
very good, though some discrepancy remains in
the strain hysteresis. It is clear, however, that
additional effort and more data, e.g. from purely
mechanical experiments, are required, to fit all
parameters in a satisfying way.

In Fig.2, the model behavior for different
types of uniaxial loading is shown. All of these
are in good qualitative agreement with experi-
mental observations reported e.g. in [3, 10, 13].
Figs.2a and b show the model response to elec-
tric cyclic loading with different superimposed
constant mechanical stresses. Compared to the
case without the mechanical loading, one can ob-
serve, that small compressive stresses (-15MPa)
increase the ratio of maximum to minimum strain,
while high stresses inhibit the evaluation of tex-
ture and thus lead to degenerated butterfly hys-
teresis loops. Accordingly, the electric hystere-
sis loop for high compressive stress is reduced to
the part which is related to pure 180◦ switch-
ing (change of polarization without change of tex-
ture). During mechanical depolarization (Fig.2c
and d), a previously polarized ferroelectric is sub-
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Figure 2: Model response a) D − E-hysteresis
loops for different magnitudes of superimposed
constant stress. b) butterfly hysteresis connected
with a). c) total strain during depolarization by
compressive stress. d) polarization during depo-
larization.

jected to compressive stress along the axis of orig-
inal poling. Thereby, the material is partly de-
polarized, accompanied by a negative irreversible
strain.

The graphs in Fig.3 resemble the multiax-
ial polarization rotation experiment reported in
[4]. Here, a previously poled ferroelectric is sub-
jected to an electric field, which differs from
the original poling direction by different angles
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Figure 3: Polarization rotation: electric loading,
with the original poling direction differing by α

from the direction of the applied electric field. a)
electric response, b) strain response, c) evolution
of relative polarization.
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Figure 4: a) Schematics of the simulation of a
quarter of a strip with a circular hole. The po-
tential boundary conditions are applied to the
left and right boundaries. b) Contour plot of
the magnitude of relative irreversible polarization
|~p|. Maximum value is 0.78 at point D. c) Con-
tour plot of the magnitude of the electric field |~E|,
Maximum value inside the hole is 1.77 kV/mm at
point B, in the ferroelectric 1.38 kV/mm at point
D. d) Electric potential ϕ (solid line) and elec-
tric field strength E (dotted line) along the line
of symmetry A-B-C at an average electric field of
1kV/mm.

α = 0◦, 45◦, 90◦, 135◦ and 180◦. The response
strongly depends on α. The change in electric
displacement D is increasing with increasing an-
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gles, the change in strain is largest for α = 90◦.
For α = 180◦, the results are exactly one half of
the hysteresis loops in Fig.1. The small graph
in Fig.3c depicts the evolution of relative polar-
ization, starting from the different initial states,
indicated by the arrows. The applied electric field
is pointing to the left.

The aim of the last example (Fig.4) is to
demonstrate the capability of the model to predict
complex inhomogeneous loading states. An ini-
tially unpolarized ferroelectric strip (PZT) with a
circular hole (35×20mm) has electrodes attached
to its short ends. The hole is modelled as di-
electric (air/vacuum). To reduce the calculation
effort, only one quarter of the system is disce-
tized (see Fig.4a). The potential difference ∆ϕ is
increased linearly from zero to 17.5 kV (for the
quarter system). Thus, the average electric field
strength at the final state of loading is 1 kV/mm,
which is slightly above the coercive field of 0.9
kV/mm. It becomes clear, that the electric field
inside of the hole is much higher than the one in
the ferroelectric. For comparison the same calcu-
lations have been carried out without discretiza-
tion the hole, i.e. with a free surface on the in-
terface. The results are almost identical to the
ones presented in this paper. This indicates, that
there is no need to account for the dielectric prop-
erties of the air in the hole. However, one should
keep in mind, that high electric fields could lead
do electric discharge in an experimental setup.

5 Conclusion

A constitutive model has been presented, which
accounts for multi-axial switching and its capabil-
ities to reproduce experimental results have been
demonstrated. The more elaborated fitting of all
constitutive parameters remains a difficult and la-
borious task and is beyond the scope of this work.
The restriction to materials with tetragonal struc-
ture is convenient. However, the proceeding could
be generalized for other or additional structures.
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